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Summary 69 

To assess the relative efficacy or effectiveness of a new intervention compared to one or more 70 

existing interventions (the comparators; e.g., the current standard treatment) in the presence 71 

of multiple sources of evidence, appropriate methods for evidence synthesis should be used. 72 

Randomised controlled trials (RCTs), provided they are well designed and have low risk of bias, 73 

are considered to be the gold standard for informing estimates of treatment effectiveness and 74 

should be used for evidence synthesis when possible. Thus, we assume that the evidence 75 

synthesis considered is based on adequate RCT data unless otherwise stated. 76 

The objective of this document is to describe the methods most commonly used for direct and 77 

indirect treatment comparisons, including their underlying assumptions, strengths and 78 

weaknesses. The guideline is aimed at assessors in the context of the EU regulation for joint 79 

clinical assessment of health technologies, although the relevance for other stakeholders is 80 

recognised. All methods for evidence synthesis (direct as well as indirect comparisons) are 81 

based on the fundamental assumption of exchangeability and therefore require assumptions 82 

of sufficient similarity and sufficient homogeneity of the trial data included. In the case of 83 

indirect comparisons, an additional assumption is that there is sufficient consistency. If any of 84 

these assumptions is violated, the results of the corresponding evidence synthesis do not 85 

provide a meaningful estimate of treatment effectiveness. If the heterogeneity is considered 86 

to be too strong to justify an overall evidence synthesis but the heterogeneity can be 87 

explained, appropriate evidence syntheses should be performed using the corresponding 88 

groups of trials or subgroups of patients. This results in different effect estimates for the 89 

different subgroups. If heterogeneity is caused by study characteristics rather than patient 90 

characteristics, meta-regression with adjustment for variables contributing to the 91 

heterogeneity is another option for dealing with heterogeneity. However, while these 92 

methods are likely to reduce heterogeneity, it is unlikely that they will eliminate it completely. 93 

General options for evidence synthesis involve the use of a fixed-effect or a random-effects 94 

model and application of frequentist or Bayesian methods for the effect estimation. In most 95 

practical situations, a random-effects model is the appropriate choice, although in some 96 

situations a fixed-effect model can be justified. Both frequentist and Bayesian approaches may 97 

be used. Bayesian approaches are especially useful in situations with sparse data. However, a 98 

clear justification of the prior distributions applied is required. Analyses based on individual 99 

patient-level data are generally preferable to aggregated data, especially for subgroup 100 

analyses. 101 

Useful frequentist methods for direct comparisons via a fixed-effect model (fixed-effect 102 

pairwise meta-analysis) include the inverse variance method for continuous data and the 103 

Mantel-Haenszel method for binary data. The standard frequentist approach for random-104 

effects meta-analyses is the Knapp-Hartung method in cases involving at least five studies. In 105 

situations with fewer than five studies, alternative methods for evidence synthesis are 106 

frequently required, such as Bayesian approaches, a qualitative summary of the study results 107 

or the beta-binomial model. 108 
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In general, direct comparisons are preferable to indirect comparisons because the latter are 109 

associated with greater uncertainties. If indirect comparisons are required, only adjusted 110 

indirect comparisons respecting randomisation are appropriate, which means that the 111 

evidence network has to be connected. Useful approaches for adjusted indirect comparisons 112 

include the Bucher method and the frequentist and Bayesian approaches for network meta-113 

analysis. 114 

If the similarity assumption is not met, methods for population-adjusted indirect comparisons 115 

may be considered provided that the network is connected and individual patient-level data 116 

are available for some of the trials included. These methods require that all effect modifiers 117 

relevant for adjustment are measured. However, this is often unverifiable and unattainable. 118 

Therefore, it is imperative that population-adjusted indirect comparisons are thoroughly 119 

investigated to ascertain whether these methods produce a better estimate of the treatment 120 

effect. The model and covariate selection strategies for adjustment must be prespecified and 121 

based on transparent criteria. Owing to the greater uncertainties associated with population-122 

adjusted methods, a large treatment effect estimate is required, which can be formally 123 

achieved via testing of shifted hypotheses. This means that a conclusion can be drawn 124 

regarding an effect only if the confidence interval lies completely above or below a certain 125 

threshold shifted away from the zero effect. 126 

In the case of disconnected networks (e.g., single-arm trials) and any situations with 127 

nonrandomised data, complete access to the individual patient-level data is required in order 128 

to apply methods that can adequately adjust for confounding. Again, these methods require 129 

that all confounders and effect modifiers relevant for adjustment are measured. However, 130 

this is often unverifiable and unattainable. Therefore, it is imperative that the model and 131 

covariate selection strategies for adjustment are prespecified and based on transparent 132 

criteria. Use of propensity scores is a method frequently applied. The assumptions required 133 

are sufficient positivity, sufficient overlap and sufficient balance. If any of these assumptions 134 

is not met, an adequate adjustment for confounding is not possible and the results from the 135 

corresponding analysis do not provide a meaningful estimate of treatment effectiveness. If a 136 

propensity score approach is applied with trimming, the final target population has to be 137 

described in detail. Owing to the greater uncertainty associated with nonrandomised data, a 138 

large treatment-effect estimate is required, which can be formally achieved via testing of 139 

shifted hypotheses. 140 

In many cases the conditions will not be ideal for the use of any of the methods presented in 141 

this guideline to produce unbiased estimates of relative effectiveness. Therefore, very careful 142 

consideration of the underlying assumptions is required when making inferences. Input from 143 

a statistician with specific expertise in this area is advised for a critical assessment of the 144 

methodological approach used, and assumptions potentially violated and the corresponding 145 

uncertainty of the results. 146 
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I Introduction, objective and scope 147 

To assess the relative efficacy or effectiveness of a new intervention compared to another 148 

intervention (the comparator; e.g., the current standard treatment) in the presence of 149 

multiple sources of evidence, the best approach is given by formally combining the evidence. 150 

Broadly, we refer to this as evidence synthesis. As individual studies providing evidence with 151 

the highest reliability of results are mostly randomised controlled trials (RCTs), we assume 152 

that the evidence synthesis is based on adequate RCT data unless otherwise stated. 153 

A systematic literature search is a prerequisite before conducting an evidence synthesis. For 154 

the purposes of this document, it is assumed that collection of the data contributing to the 155 

comparisons is complete, as required in the relevant EU regulation (see Article 9 in [26]). 156 

Evidence must be relevant for the research question and in most cases should be formulated 157 

according to the PICO (Population, Intervention, Comparator, Outcome) framework (see 158 

European Network for Health Assessment Technology (EUnetHTA) 21 Practical Guideline 159 

D4.2.1 Scoping Process) and of acceptable quality (assessed using an appropriate risk of bias 160 

(RoB) tool; see EUnetHTA 21 Practical Guideline D4.6.1 Validity of Clinical Studies) to justify 161 

evidence synthesis. Consistency in outcome assessment between studies must be checked 162 

and discussed. 163 

Objective 164 

The objective of this document is to describe the methods currently available for direct and 165 

indirect treatment comparisons regarding their underlying assumptions, strengths and 166 

weaknesses. The guideline is aimed at assessors in the context of the EU regulation for joint 167 

clinical assessment (JCA) of health technologies, although the document is also relevant for 168 

other stakeholders including those submitting evidence. This guideline also specifies the 169 

appropriateness of methods to the data situation (e.g., the type of network and the data 170 

sources for which they can be used). The document is not a methodological textbook and does 171 

not give a detailed description of the statistical techniques described. Rather, the methods are 172 

briefly summarised and general guidance is provided on which method(s) are appropriate in 173 

a particular situation. Specific guidance for assessors and co-assessors dealing with results 174 

from direct and indirect treatment comparisons submitted by health technology developers 175 

for performing a JCA is provided in EUnetHTA 21 Practical Guideline D4.3.1 Direct and Indirect 176 

Comparisons. This guideline does not cover the basic methodological principles for direct 177 

comparison of treatments using data from a single head-to-head comparative study (practical 178 

guidance on assessing the degree of certainty for results from such studies can be found in 179 

the EUnetHTA 21 Practical Guideline D4.6.1 Validity of Clinical Studies). In addition, this 180 

guideline does not cover methods for evidence synthesis of diagnostic accuracy studies. 181 

Scope and terminology 182 

Terms used to describe different formal evidence syntheses as discussed in this document are 183 

sometimes used with a slightly different understanding throughout the literature, and 184 

therefore we need to describe these terms and what they broadly describe. Pairwise meta-185 
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analysis, also known as direct comparison, refers to the synthesis of direct evidence for when 186 

exactly two interventions are compared. Network meta-analysis (NMA) is a generalisation of 187 

meta-analysis to analyse more complex evidence networks, which may include both direct 188 

and indirect evidence. We consider NMA to include other terms used in the literature to 189 

describe the synthesis of both direct and indirect evidence, such as mixed treatment 190 

comparison and indirect treatment comparison. Indirect treatment comparison is used by 191 

some authors to describe the situation in which inference about the relative efficacy or 192 

effectiveness of two treatments is made in the absence of trials comparing these treatments 193 

head-to-head. In this document, we use the term indirect comparison as the broadest term to 194 

refer to any evidence synthesis incorporating indirect evidence, which therefore includes 195 

NMA, population-adjusted methods such as matching-adjusted indirect comparison (MAIC) 196 

and simulated treatment comparison (STC), and comparisons made in disconnected evidence 197 

networks. 198 

For cases in which no data for the relevant direct comparison are available or the research 199 

question requires simultaneous comparison of more than two interventions, methods for 200 

indirect comparisons are available. However, results from indirect comparisons generally have 201 

greater uncertainty than results from direct comparisons. Therefore, direct comparisons 202 

based on adequate RCTs with low RoB should be applied whenever possible. 203 

For simplicity, we use effectiveness as the common term to describe efficacy or effectiveness 204 

throughout the rest of this document. Effectiveness also includes safety within the context of 205 

this document. Furthermore, treatment, intervention and health technology are all terms used 206 

for any health technology that can be assessed. 207 

There are many useful publications on methods for evidence synthesis that advise on the 208 

theories, methods and assumptions; while we have drawn material from these texts, we 209 

advise further reference to the articles for completeness [6,17,33,68,78,86]. 210 

  211 
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II Analysis and discussion of methodological issues 212 

1 Types of evidence 213 

The scope including the PICO framework for an evidence synthesis is defined elsewhere 214 

[52,53] (see also EUnetHTA 21 Practical Guideline D4.2.1 Scoping Process). In order to carefully 215 

consider the analysis that is most appropriate, there needs to be a clear understanding of the 216 

types of evidence presented by health technology developers. The following briefly describes 217 

the types of evidence. Further guidance will be provided for assessors in EUnetHTA 21 218 

Practical Guideline D4.3.1 Direct and Indirect Comparisons. In the case of different PICO 219 

questions, a different evidence synthesis for each PICO (e.g., pairwise meta-analysis or NMA) 220 

is generally required. Information on categorisation of individual clinical study designs is given 221 

in EUnetHTA 21 Practical Guideline D4.6.1 Validity of Clinical Studies. 222 

The gold-standard evidence is from adequate RCTs with low RoB. This represents direct 223 

evidence on the benefit of a treatment over an existing comparator(s). A key feature of 224 

randomisation is that it ensures that there are no systematic differences between treatment 225 

arms in terms of prognostic variables and effect modifiers. In this case, the underlying 226 

assumption of exchangeability holds; in other words, if patients from one group were 227 

substituted to the other, the same treatment effect would be expected. This implies that 228 

patients in each treatment group have the same average risk of presenting the outcome of 229 

interest on inclusion in the trial and therefore there is an unbiased estimation of the relative 230 

treatment effectiveness (assuming a sufficient level of internal validity for the RCT of interest). 231 

Importantly, this applies not only to known or observed patient characteristics but also to 232 

unknown characteristics for which balance cannot be achieved (or even assessed) using other 233 

methods [11]. 234 

In what follows, it is important to distinguish between prognostic variables, effect modifiers 235 

and confounders. Prognostic variables are characteristics (i.e., patient characteristics) that 236 

affect the outcome of interest irrespective of which treatment is received, while effect 237 

modifiers are characteristics that alter the relative effectiveness between two treatments. 238 

Thus, effect modifiers are specific to the pair of treatments being compared and to the scale 239 

used to measure the relative treatment effectiveness. An example is the stage of a particular 240 

disease: the relative effectiveness of the treatment being studied to its comparator is not the 241 

same for patients at an early stage and patients at a later stage of the disease. In statistical 242 

terms, effect modifiers can be considered interaction terms between the treatment and the 243 

outcome of interest. It is possible for a particular characteristic to be both a prognostic 244 

variable and an effect modifier, although in general not all prognostic variables will be effect 245 

modifiers. In the context of a comparison between two treatments, a confounder is a 246 

characteristic that affects both the treatment received and the outcome; in other words, a 247 

prognostic variable that is not “balanced” between treatment groups. 248 

All other sources of evidence commonly encountered are nonrandomised. These include 249 

single-arm trials, cohort studies, case-control studies, other observational studies and the use 250 

of historical controls. Any such study has much greater potential to include material bias in 251 
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the estimate of relative treatment effectiveness, especially as the underlying assumption of 252 

exchangeability is very unlikely to hold, and there is a very high risk of confounding bias. This 253 

very high RoB is likely to carry through and can be compounded when combining evidence 254 

from these sources. 255 

In its simplest form, “indirect evidence” for a comparison of two interventions A and B arises 256 

when there is direct evidence (e.g., RCTs) comparing both A to C, and B to C that can be 257 

combined to indirectly estimate the benefit of treatment A versus treatment B (Figure 1a). 258 

Indirect evidence cannot ensure balance of both known and unknown effect modifiers to the 259 

same degree as direct evidence from RCTs and, all else being equal, is more uncertain as a 260 

result. However, when direct evidence informing a comparison of interest is not available, 261 

comparisons using indirect evidence need to be made. 262 
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2 Networks of evidence 263 

The collection of studies relevant to the analysis forms an evidence network (Figure 1) [20]. 264 

This network consists of both direct evidence, that is, evidence from RCTs (represented by 265 

lines connecting the interventions), and indirect evidence, which exists whenever two 266 

interventions can be connected by a path of RCTs. These networks of randomised evidence 267 

allow to estimate the relative effectiveness for any pair of treatments, provided they are 268 

connected by a path of RCTs. A network is said to be connected (as in Figure 1) if any two 269 

comparators are linked by at least one path of RCTs. 270 

 271 

 272 

Figure 1. Illustrative networks of evidence. (a) The solid lines represent RCTs comparing A to 273 
C and B to C (direct evidence), which then allows an indirect comparison (dotted line) between 274 
A and B (described as a simple star network). (b) Direct evidence between A and B, A and C, 275 
and B and C (closed loop) allows a comparison between the direct and indirect evidence. (c) A 276 
larger network containing evidence for many different treatments. 277 
 278 

When considering an evidence synthesis for the comparison of two interventions, the shape 279 

of the network (as described in Figure 1) has an impact on the type of analyses that may be 280 

carried out. Three examples are shown. There are, however, more geometric networks that 281 

can be formed [64]. Direct comparisons (i.e., standard pairwise meta-analyses) are carried out 282 

in connected evidence networks containing two interventions. For connected networks 283 

containing more than two interventions, there are a number of methods available. Bucher’s 284 

method for indirect comparison (Section 5.1) can only be used in the case of a simple star 285 

network. In more complex connected networks of evidence, more complex NMA methods 286 

(Section 5.2) are needed. 287 
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 288 
Figure 2. Disconnected networks. (a) Two single-arm studies. (b) Two RCTs (A vs B, C vs D) for 289 

which the required comparison is C versus B, so a strong assumption must be made in relation 290 

to the equivalence of the comparisons and the relative treatment effectiveness. 291 

Disconnected networks of evidence arise when a set of RCTs does not provide sufficient 292 

information to be able to carry out an assessment of an intervention against a relevant 293 

comparator along a connected path. A disconnected network can occur in cases in which the 294 

clinical evidence stems from single-arm trials (i.e., a study carried out without a comparison 295 

group; Figure 2a) or the standard treatment is different in the studies and there are no head-296 

to-head comparisons of the interventions being considered (Figure 2b). Disconnected 297 

networks such as those illustrated in Figure 2 are problematic since there is no way in which 298 

the comparators of interest can be compared using paths involving evidence from randomised 299 

or comparative trials. Attempts to connect these networks have been proposed in the 300 

literature to deal with cases in which such evidence networks have arisen [44,65]. However, 301 

these approaches rely on very strong assumptions that need to be examined carefully for any 302 

specific application. Evidence from a single-arm study (i.e., noncomparative observational 303 

data) is sometimes compared to data for a group obtained elsewhere; for example, historical 304 

controls or an unrelated contemporaneous study could be used [30]. The implication of using 305 

such evidence is that the relative comparison of the results between the groups depends not 306 

only on the interventions being studied but also on all other aspects that differ between the 307 

groups and the studies (i.e., the assumption of exchangeability probably does not hold). 308 

Currently, there is no gold-standard method that addresses the issue of disconnectedness of 309 

evidence networks. The use of such evidence in JCA is highly problematic because the EU 310 

regulation requires comparative results on the basis of adequate comparisons (PICO 311 

framework) [26]. 312 

Other types of evidence that can be problematic to incorporate in a network are comparative 313 

observational studies and registry data that did not include randomisation. Observational 314 

studies examining two or more interventions have been used to connect an otherwise 315 

disconnected network [65]. This can allow for comparisons that otherwise would not be 316 
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possible. However, relying solely on these methods to produce an unbiased estimate of the 317 

relative effectiveness of a treatment(s) of interest in practical settings remains controversial, 318 

and producing evidence using data from adequate RCTs with low RoB should always be 319 

favoured. In the context of JCA, this could mean that unreliable evidence from observational 320 

studies should not be used because the corresponding results will be highly uncertain and 321 

would not provide a meaningful estimate of the relative treatment effectiveness. In some 322 

cases, it may be possible that the lack of randomisation can be compensated by rigorous 323 

adjustment for confounding. However, this requires access to the full individual patient-level 324 

data (IPD) information (Section 6). 325 
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3 General statistical considerations 326 

There is not always a common understanding of the terminology in the field of evidence 327 

synthesis, in particular for indirect comparisons. In the literature, different authors use 328 

different terms for the same concept; for example, similarity and homogeneity are sometimes 329 

used interchangeably. Since there is no common terminology for the concepts that are 330 

described in the following sections, it is possible that these concepts are described with a 331 

different terminology elsewhere. 332 

In a formal evidence synthesis (whether simple or more complex), exchangeability is the most 333 

fundamental assumption, that is, if individuals in one trial were substituted to another, the 334 

treatment effect observed is expected to be the same [17,36]. For practical purposes, this 335 

fundamental assumption is operationalised by assessing the properties of similarity and 336 

homogeneity and, in the case of indirect comparisons, consistency, all of which are required 337 

for exchangeability to hold [21,40,73]. Exchangeability can then be explored by first looking at 338 

observable consequences of breaks in this assumption, namely by searching for dissimilarities 339 

between studies in terms of patient characteristics and study design. Moreover, there is the 340 

possibility of testing for statistical heterogeneity. If the test is statistically significant, then 341 

variations in between-study treatment effects are plausibly not due to chance (i.e., to random 342 

error) alone and thus there are systematic errors, so it is necessary to look for dissimilarities 343 

that explain this statistical heterogeneity. 344 

The common requirements of similarity and homogeneity apply regardless of the complexity 345 

of the network or the methods used for conducting evidence synthesis, and these should be 346 

carefully assessed before and during assessment when undertaking a formal evidence 347 

synthesis. When any of these properties do not hold, the exchangeability assumption is 348 

violated, the outputs of the analyses are affected and probably biased, and advanced 349 

statistical expertise should be sought to aid in interpretation of the outputs. 350 

The main assumptions and other general statistical considerations applicable to all methods 351 

for evidence synthesis are outlined in this section; assumptions that are specific to a subset of 352 

methods or to one particular method will be described in the corresponding section. 353 

3.1 Assumptions and robustness of comparisons 354 

3.1.1 Similarity 355 

The first component of the exchangeability assumption is the requirement for sufficient 356 

similarity of all the trials included regarding effect modifiers, which means that there are no 357 

differences in the distribution of known and unknown effect modifiers (e.g., sex or age) that 358 

modify the true difference between the treatment arms regarding the outcome of interest 359 

[40,73]. A thorough feasibility assessment is necessary to identify differences in study design 360 

and patient characteristics that can influence similarity. If dissimilarities between studies in 361 

study design and/or patient characteristics are observed at a level that is considered 362 

substantial, it can be indicative that the fundamental assumption of exchangeability will not 363 
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hold. Therefore, only if study design and the patient populations are considered similar 364 

enough can the results be of value in decision-making. Specific guidance on assessing similarity 365 

in the context of JCA is provided in EUnetHTA 21 Practical Guideline D4.3.1 Direct and Indirect 366 

Comparisons. 367 

3.1.2 Homogeneity 368 

A second component of the exchangeability assumption is that the relative effectiveness 369 

between each pair of treatments is sufficiently homogeneous across all studies comparing 370 

those treatments included in an evidence network (i.e., we assume sufficient homogeneity of 371 

studies). If the results from the studies are very different, heterogeneity is observed and 372 

therefore combining the results may not be appropriate [25]. It is possible to test for 373 

heterogeneity to provide evidence of whether or not the study results differ greatly [78]. 374 

However, nonsignificance of a statistical test for heterogeneity does not prove homogeneity 375 

because the test can be nonsignificant owing to lack of power. Statistical heterogeneity (i.e., 376 

when effect estimates vary more than expected by chance alone) can also be quantified via 377 

several methods [34,63]. In addition to statistical heterogeneity, clinical and methodological 378 

heterogeneity must also be examined. Clinical heterogeneity includes variability in patient 379 

inclusion criteria (e.g., age, severity of disease, duration of follow-up), interventions (e.g., 380 

dosage, administration route) and outcomes (e.g., different time points). Methodological 381 

heterogeneity includes, for example, variability in study design. To explore heterogeneity 382 

further and to identify factors contributing to it, subgroup analyses and meta-regression are 383 

useful tools [35,81]. In addition, a significant statistical test for heterogeneity can be indicative 384 

of dissimilarities in study design and/or patient characteristics (Section 3.1.1) and can lead to 385 

a discussion of the plausibility of the fundamental assumption of exchangeability. Specific 386 

guidance on assessing heterogeneity in the context of JCA is provided in EUnetHTA 21 Practical 387 

Guideline D4.3.1 Direct and Indirect Comparisons. 388 

Regardless of whether heterogeneity can be explained there must still be a decision whether 389 

or not to proceed with the comparison and whether subgroup analyses will sufficiently explore 390 

the impact of the heterogeneity on the analysis outputs. In a subgroup analysis, only studies 391 

that are considered to be sufficiently alike according to a more narrowly defined set of criteria 392 

(e.g., age range of study participants) should be included. 393 

3.1.3 Robustness 394 

The robustness of the analysis will depend on the inclusion of appropriate evidence that has 395 

been gathered in a systematic and rigorous manner and excluding any obvious bias that may 396 

occur. Further assessment of the robustness can be undertaken via sensitivity analyses of 397 

various aspects such as models and missing data, among others. Results for sensitivity 398 

analyses should be thoroughly discussed in the context of the evidence available and the 399 

results obtained. 400 
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The results of an evidence synthesis may be overly influenced by one or a small number of 401 

studies. Whether or not this is problematic should be discussed in the context of the 402 

evaluation. Similarly, some studies may be outliers in a statistical sense [49]. Outlier and 403 

influential studies are not synonymous: an outlier study is not necessarily an influential one, 404 

and vice versa. A first step for identification of outliers is to visually inspect a forest plot to 405 

identify any unusual data points or cases in which the pooled estimate appears to be driven 406 

by a single or small number of studies. In meta-analysis and NMA, visual inspection of quantile-407 

quantile plots and other graphical tools can identify outliers and the robustness of the results 408 

of evidence syntheses [2,42,47]. Sensitivity analysis techniques can be used to determine the 409 

impact of influential studies and outliers on the results of an evidence synthesis. For example, 410 

an analysis can be conducted with and without a particular study to determine the impact of 411 

that study on the results [12]. It is also useful to characterise outliers in terms of how they 412 

might differ from other studies). 413 

3.2 Sources of bias 414 

In conducting treatment comparisons, bias must be minimised. Bias reflects a systematic error 415 

in the results and results in deviation of the estimated treatment effectiveness from the true 416 

treatment effectiveness. When performing evidence synthesis, there are two potential 417 

sources of bias that should be considered. The first is bias in the results from the individual 418 

studies included in the review. If the individual study results are biased, then a synthesised 419 

summary of the individual results will also be biased and can yield misleading conclusions. 420 

Therefore, the RoB for the results from the individual studies must be assessed [75,76]. 421 

Practical guidance on assessment of the validity of individual studies is given in the 422 

EUnetHTA 21 Practical Guideline D4.6.1 Validity of Clinical Studies. 423 

The second potential source of bias is the result from a pairwise meta-analysis or other form 424 

of evidence synthesis. In addition to the RoB in the studies included, the result for evidence 425 

synthesis may be affected by bias due to the absence of findings from studies that should have 426 

been included, known as publication bias. The issue of publication bias arises because negative 427 

results are less likely to be published [24]. The consequence of this bias is that an evidence 428 

synthesis result will show a spurious significant effect. Publication bias may be detectable 429 

using funnel plots or regression techniques, but these methods are not without weaknesses 430 

[54]. Asymmetry in a funnel plot may indicate publication bias or it may be a reflection of how 431 

comprehensive the search strategy has been. A noncomprehensive search is a potential 432 

source of bias. Therefore, it is of critical importance that the search strategy for the systematic 433 

review is as comprehensive as possible and that clinical trial registers are searched, where 434 

possible. The presence of publication bias can impact on any evidence synthesis irrespective 435 

of the methodology used. 436 

In the context of JCA, the health technology developer has to provide all available data 437 

concerning the product under assessment according to the EU regulation. Therefore, the issue 438 

of publication bias typically only arises in the case of studies sponsored or conducted by other 439 

organisations (e.g., studies investigating comparator products). 440 
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3.3 Fixed-effect and random-effects approaches for evidence synthesis 441 

Fixed-effect and random-effects approaches for evidence syntheses are available. In the fixed-442 

effect model, also known as the common-effect model, the true treatment effectiveness is 443 

assumed to be the same in each study that compares the same treatments. Use of a fixed-444 

effect model therefore follows from the assumption that variability between studies is entirely 445 

due to chance, which is commonly implausible [5]. In a random-effects model, the treatment 446 

effect in each study is assumed to vary around an overall average treatment effect(s) [23]. 447 

Specifying a fixed-effect model for evidence synthesis relies on a stronger assumption than 448 

specifying a random-effects model, namely that the true effect for the same comparison is 449 

identical in all included studies. This depends on the strictness of the inclusion criteria of the 450 

studies used for pooling, the definition of outcomes (including whether they are objective or 451 

not) and how the interventions are defined (e.g., not grouping multiple doses as a single 452 

treatment), among others. Without adequate justification that the assumption of a common 453 

effect holds, a random-effects model should generally be used. There are situations in which 454 

a fixed-effect model is appropriate, such as a pairwise meta-analysis of two studies with 455 

identical designs. However, incorrect use of a fixed-effect model may result in, for example, 456 

too narrow confidence intervals that are too narrow and consequently p-values that are too 457 

small [25]. 458 

Random-effects models provide an estimate of the between-study variance and the summary 459 

effect estimate. Prediction intervals provide a predicted range for the true effect size in an 460 

individual study, which incorporates the degree of heterogeneity in a random-effects evidence 461 

synthesis, together with the uncertainty surrounding the relevant average treatment effect. 462 

Therefore, the use of prediction intervals is recommended when reporting results for a 463 

random-effects evidence synthesis [83]. When the number of studies included is small, 464 

random-effects methods may have low statistical power. In this scenario, a fixed-effect 465 

approach can be an option if appropriate, or a qualitative summary of the study results might 466 

also be considered [3,67]. Bayesian methods are also an option in cases involving sparse data 467 

and few studies [3]. 468 

3.4 Frequentist and Bayesian approaches 469 

As with any approach to statistical inference, evidence synthesis may be performed using a 470 

frequentist or a Bayesian framework. Because of the possibility of incorporating information 471 

from existing sources of data for modelling of prior distributions, Bayesian methods are 472 

particularly useful in situations with sparse data. In the Bayesian approach, prior probability 473 

distributions for model parameters such as treatment effects and between-study 474 

heterogeneity are specified before the analysis begins. The study results are then combined 475 

with the prior distributions to derive posterior distributions for the model parameters, 476 

including the overall treatment effectiveness [82]. Prior distributions that have broad support 477 

in the parameter space are called noninformative. When noninformative prior distributions 478 

are used, results are frequently equivalent to those observed using a frequentist approach. 479 

When there is some prior knowledge (e.g., about likely between-study heterogeneity), a 480 
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distribution that is narrower can be used (i.e., a distribution that will be called informative). 481 

As this has a stronger influence on the posterior distributions and hence on the estimate of 482 

relative effectiveness, informative prior distributions should generally only be used for the 483 

heterogeneity parameter and not for the treatment effect itself. The choice of prior 484 

distributions for model parameters must be accompanied by a justification and a clear 485 

description of how they were generated to maintain transparency. In addition, it is important 486 

to ensure that sensitivity analyses for the specification of the prior distribution are carried out. 487 

3.5 Use of IPD and aggregate data 488 

While evidence synthesis typically combines study-level effect estimates, it is also possible to 489 

pool IPD from studies. If available, statistical analyses using raw data (i.e., IPD) should be 490 

preferred to statistical analyses that use only summary statistics. The methods for evidence 491 

synthesis based on IPD can broadly be classified into two groups: a one-step analysis, in which 492 

all patients are analysed simultaneously as though in a mega-trial, but with patients clustered 493 

by trial; and a two-step analysis, in which the studies are analysed separately, but then 494 

summary statistics are combined using standard techniques. Hybrid methods are also 495 

available for combining IPD and aggregated study data [59]. Evidence synthesis based on IPD 496 

have better modelling options for estimating treatment effectiveness when compared to 497 

corresponding aggregate data analyses. In particular, the availability of IPD allows valid 498 

subgroup analyses and statistical adjustment regarding patient characteristics [4,72]. 499 

However, IPD may not be available, which limits the use of evidence synthesis based on IPD. 500 

Key Points I 501 

¶ Sufficient similarity and sufficient homogeneity are required to justify an evidence 502 

synthesis of the data being considered. 503 

¶ If heterogeneity is too strong to justify an evidence synthesis but the heterogeneity can 504 

be explained, appropriate evidence syntheses should be performed in the corresponding 505 

groups of trials or subgroups of patients or by means of meta-regression. 506 

¶ Fixed-effect models rely on a strong assumption that all variation observed is due to 507 

chance, which is rarely the case. Random-effects models are therefore generally 508 

preferred. Incorrect use of a fixed-effect model will lead to confidence intervals that are 509 

too narrow and p-values that are too small. 510 

¶ Application of Bayesian methods is a useful option, especially when the data are sparse 511 

and the fixed-effect assumption is not adequate. 512 

¶ Analysis of IPD data is preferred over aggregate data/summary statistics, especially for 513 

subgroup analyses regarding patient characteristics. 514 
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4 Direct comparisons 515 

Direct comparisons are performed by means of standard pairwise meta-analyses in which 516 

results from multiple trials that all compare the treatment of interest to the same comparator 517 

are combined. In this context, the comparator could be placebo, a single drug or a combination 518 

of several drugs from a single class (e.g., ACE inhibitors) according to the PICO question. An 519 

investigation of whether the data considered for the meta-analysis fulfil the assumptions of 520 

similarity and homogeneity is required. If this is not the case, the results from pairwise meta-521 

analysis of such data would not provide a meaningful and reliable estimate of treatment 522 

effectiveness. 523 

Pairwise meta-analysis involves computation of a summary statistic with precision for each 524 

trial followed by combination of these studies into a weighted average [23]. Outcomes can be 525 

binary, continuous or time-to-event. The summary statistic can be an odds ratio, risk ratio, risk 526 

difference, hazard ratio, difference of means or standardised mean difference. The same 527 

summary statistic must be computed for each study included in the pairwise meta-analysis. 528 

Reporting of the results from pairwise meta-analyses should follow the dossier specifications 529 

set out in the EU regulation and should take the Preferred Reporting Items for Systematic 530 

Reviews and Meta-Analyses (PRISMA) statement [52,53] into account. The methods used for 531 

direct comparisons can be broadly split into frequentist and Bayesian approaches. 532 

4.1 Frequentist approach 533 

In a frequentist framework, pairwise meta-analyses can be divided into fixed-effect and 534 

random-effects methods. Fixed-effect models include inverse variance, Mantel-Haenszel and 535 

Peto methods. Inverse variance methods can be used to pool estimated summary measures 536 

with standard error and weights proportional to the inverse squared standard errors for the 537 

studies. Inverse variance methods are less reliable when data are sparse. The Mantel-Haenszel 538 

method provides more robust weighting when data are sparse and gives similar weights to 539 

inverse variance methods when data are not sparse. The Peto method is used for odds ratios 540 

and can be extended for pooling of time-to-event data. It has been shown that the Peto 541 

method fails when treatment effects are very large and when the sizes of the trial arms are 542 

very unbalanced [80]. The Peto method performs well when event rates are very low, 543 

treatment effects are small and the trial design is balanced. An undesirable feature of the Peto 544 

method is its dependence on the group size ratio, which makes its interpretation difficult and 545 

limits its practical usefulness [8]. Fixed-effect methods tend to give small weights to small 546 

studies and large weights to large studies. In general, the standard approach for application 547 

of the fixed-effect model is the inverse variance method in the case of continuous data and 548 

the Mantel-Haenszel method in the case of binary data. 549 

The most common estimation method for the random-effects model was the method of 550 

DerSimonian and Laird [15]. However, this method has increased type 1 errors (i.e., p-values 551 

that are too small and confidence intervals that are too narrow), especially in the case of few 552 

available studies, and is no longer recommended [14]. The standard method for random-553 
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effects meta-analyses is the Knapp-Hartung (KH) method, also the called Hartung-Knapp-Sidik-554 

Jonkmann method [83]. The KH approach in combination with the Paule-Mandel estimator for 555 

the heterogeneity parameter is recommended as the standard method for random-effects 556 

meta-analysis in situations with five or more studies. As a supplement to confidence intervals, 557 

use of prediction intervals is also recommended [83]. In situations with very homogeneous 558 

data, ad hoc variance correction may be required for the KH method [89]. 559 

A disadvantage of the KH method is that this approach frequently has very low power in the 560 

case of very few (i.e., <5) studies and is not recommended in these scenarios [3,67]. 561 

Alternative approaches that may be considered include a fixed-effect pairwise meta-analysis 562 

or a qualitative summary of the study results, and other methods, such as Bayesian pairwise 563 

meta-analysis (Section 3.4) and the beta-binomial model in the case of binary data [50]. A 564 

possible procedure for choosing a useful approach for evidence synthesis in cases involving 565 

very few studies is described by Schulz et al. [67]. 566 

For certain effect measures, such as risk ratios, a study with zero cases can be problematic for 567 

some weighting approaches such as the inverse variance method. In order to deal with this, a 568 

continuity correction can be applied to arms with zero cases. While a value of 0.5 was used 569 

historically, other nonfixed zero-cell corrections may have advantages, as has been explored 570 

by a number of authors [7,80]. For avoiding the use of zero-cell corrections, the beta-binomial 571 

model is useful [43]. 572 

4.2 Bayesian approach 573 

Bayesian methods for pairwise meta-analysis are analogous to frequentist methods with the 574 

primary distinction being the use of prior distributions for the model parameters [77], that is, 575 

the treatment effect and (for random-effects models) heterogeneity parameters. 576 

Bayesian models perform well in many situations in which others do poorly, such as in analyses 577 

involving sparse data and few studies by means of the binomial-normal hierarchical model 578 

(which also avoids the need for a continuity correction in the case of zero-event studies). More 579 

generally, a hierarchical Bayesian model with weakly informative prior distributions for the 580 

heterogeneity parameter may be a better method to account for uncertainty than a 581 

nonBayesian approach, particularly when the number of studies is small [60]. For random-582 

effects models, selection of the prior distribution for the heterogeneity parameter is critical 583 

to any Bayesian analysis [28] and this choice should therefore be transparently justified and 584 

varied in sensitivity analyses (Section 3.4). 585 
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Key Points II 

¶ Standard frequentist methods for fixed-effect pairwise meta-analysis are the inverse 

variance method for continuous data and the Mantel-Haenszel method for binary data. 

¶ The Knapp-Hartung method is currently the standard frequentist approach for random-

effects pairwise meta-analysis when there are five or more studies. 

¶ Frequentist and Bayesian approaches to pairwise meta-analysis are both possible. The 

Bayesian approach allows incorporation of prior or external information for the 

treatment effects and heterogeneity parameters, but the choice of the prior 

distributions requires a clear justification. 

¶ In general, noninformative prior distributions should be used for Bayesian analyses. 

Informative prior distributions should generally only be used for the heterogeneity 

parameter in random-effects pairwise meta-analysis and should be thoroughly justified. 

¶ Standard approaches for random-effects meta-analysis with rare events and/or few 

studies often perform poorly. In this case, the use of alternative methods should be 

considered, such as a qualitative summary of the study results, Bayesian methods (with 

a weakly informative prior distribution for the heterogeneity parameter) or the beta-

binomial model. 



 

 21 

5 Indirect comparisons 586 

When treatments have not been directly compared in RCTs, indirect comparisons are needed. 587 

Treatments can be connected in simpler or more complex networks of RCTs via common 588 

comparators or in a disconnected network if none of the studies has a common comparator 589 

(Figures 1 and 2). 590 

When indirect comparisons are made, methods for adjusted indirect comparisons with a 591 

common comparator should be used, in general, by using a random-effects model. Adjusted 592 

indirect comparisons can be performed on aggregated data and hence do not require access 593 

to IPD. Population-adjusted methods (Section 5.3) are performed on a combination of 594 

aggregate data and IPD. Comparisons based on nonrandomised evidence require access to 595 

the full IPD information (Section 6). The following sections describe methods for indirect 596 

comparisons in connected networks. The use of methods for indirect comparisons based on 597 

aggregated data is not recommended in disconnected networks (Section 5.3.4). 598 

Indirect comparisons of aggregate data assume exchangeability across studies, which requires 599 

sufficient similarity of all the trials included regarding effect modifiers, and sufficient 600 

homogeneity of the study results for all pairwise comparisons [40]. An additional component 601 

of the exchangeability assumption for indirect comparisons is the requirement for sufficient 602 

consistency. Consistency is the assumption that direct pathways and indirect pathways are 603 

estimating the same treatment effect [32,40,73]. Further information on consistency is given 604 

in Section 5.2. Specific guidance on assessing similarity, homogeneity and consistency in the 605 

context of JCA is provided in EUnetHTA 21 Practical Guideline D4.3.1 Direct and Indirect 606 

Comparisons. 607 

These requirements are not always met in practice and they are often poorly assessed in 608 

practical applications [21,66,74]. Their validity should be assessed and reported. If at least one 609 

of these requirements is not fulfilled, the results of an adjusted indirect comparison do not 610 

provide a meaningful estimate of the treatment effect. 611 

Unadjusted indirect comparisons naively combine study data as though they had come from 612 

a single large trial and thus break randomisation [22,27]. Unadjusted indirect comparisons 613 

require the assumption of "conditional constancy of absolute effects" (Section 5.3.4), which is 614 

very unlikely to be fulfilled. Adjusted indirect comparisons preserve randomisation and should 615 

always be used in preference to unadjusted methods. 616 
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Key Points III 

¶ Indirect comparisons are associated with greater uncertainty than direct comparisons. 

Therefore, direct comparisons should be preferred where possible. When indirect 

comparisons are carried out, only adjusted indirect comparisons are appropriate, as 

these respect within-study randomisation. 

¶ In addition to sufficient similarity and sufficient homogeneity, adjusted indirect 

comparisons of aggregate data assume sufficient consistency of direct and indirect 

evidence. The validity of these properties should be assessed and reported. 

¶ If sufficient similarity, sufficient homogeneity and sufficient consistency cannot be 

assumed, an adjusted indirect comparison should not be performed because the 

corresponding results do not provide a meaningful estimate of the treatment effect. 

¶ Useful approaches for indirect comparisons include the Bucher method and the 

frequentist and Bayesian NMA models. 

5.1. Bucher’s method for adjusted indirect comparisons 617 

Bucher et al. [9] presented an adjusted indirect method of treatment comparison for 618 

aggregate data that can estimate relative treatment effectiveness for simple star networks 619 

(Figure 1). This method is based on the odds ratio as the measure of the treatment effect, 620 

although it can be extended to other measures such as the risk ratio, risk difference, 621 

standardised mean difference and hazard ratio [85]. The Bucher method is intended for 622 

situations in which there is no direct comparative evidence for treatments A and B and the 623 

only evidence is through comparison with treatment C. For cases in which there are multiple 624 

studies for a pairwise comparison, these must be combined to obtain a summary effect 625 

estimate (e.g., using the methods discussed in Section 4) before applying the Bucher method. 626 

Certain more complex networks, including closed loops, can be analysed, but only in the form 627 

of multiple pairwise comparisons. However, this method assumes independence between the 628 

pairwise comparisons and thus it cannot be easily applied to multiarm trials, for which this 629 

assumption fails. The consistency assumptions cannot be assessed in applications of the 630 

Bucher method because only indirect evidence is available for the comparison of interest. In 631 

this case, a thorough assessment of similarity is even more important. When random-effects 632 

models have been used to synthesise treatment effects for one or more direct comparisons, 633 

use of the Bucher method, either to indirectly estimate treatment effects or to test for 634 

consistency within closed loops, is problematic and should be avoided [17,46]. More general 635 

NMA methods that appropriately incorporate random effects are available (e.g., the Bayesian 636 

approach in Section 5.2.3) and are preferable in this scenario. 637 

5.2 Network meta-analysis 638 

An NMA combines direct and indirect evidence to determine the relative effectiveness of a 639 

treatment compared to two or more other treatments. The same assumption of 640 
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exchangeability as for all indirect comparisons applies, which requires sufficient similarity, 641 

sufficient homogeneity and sufficient consistency. Reporting of results from NMAs should 642 

follow the dossier specifications of the EU regulation and should take the PRISMA extension 643 

for systematic reviews containing NMAs [37] into account. Whenever possible, all available 644 

relevant comparators should be included in the NMA [19]. 645 

Measures of inconsistency are available for NMAs [18,41] for which both direct and indirect 646 

evidence is available. A statistically significant difference in the estimates of relative 647 

effectiveness between direct and indirect evidence would indicate inconsistency. A difference 648 

in the direction of relative effectiveness, even if not statistically significant, would also raise 649 

concerns about consistency. The possibility of inconsistency increases with increasing network 650 

complexity and greater numbers of treatments. There is also a power trade-off between the 651 

number of pairwise comparisons and the number of studies included in the analysis: if there 652 

are too many comparisons with too few studies, the analysis may be underpowered for 653 

detection of true differences [13]. The sources for inconsistency in a complex network can be 654 

difficult to identify, which raises questions about how elaborate an evidence network should 655 

be in order to be accepted for analysis. In the context of an NMA, the presence of 656 

heterogeneity may mask inconsistency. The consistency assumption cannot be assessed in 657 

cases in which corresponding direct and indirect evidence is not available. In such cases, a 658 

thorough assessment of similarity is even more important. 659 

5.2.1 Lumley’s method for NMA 660 

The early NMA method proposed by Lumley [48] allows combination of direct and indirect 661 

evidence. This methodology requires a closed loop structure for the data (Figure 1). Depending 662 

on the complexity of the network structure, it is generally possible to compute the relative 663 

effectiveness by a number of routes. It is possible to compute the degree of agreement 664 

between the results obtained when different linking treatments are used. This agreement 665 

forms the basis of an incoherence measure, which is used to estimate the consistency of the 666 

network paths. Incoherence is used to compute the 95% confidence interval for the indirect 667 

comparison. A disadvantage of this method is that correlations that may exist between 668 

different treatment-effect estimates cannot be taken into account. Therefore, it is not possible 669 

to adequately include multiarm trials. Other methods that are able to deal adequately with 670 

multiarm studies have been developed (see below). Therefore, the Lumley method no longer 671 

has major practical relevance and is rarely used. 672 

5.2.2 Frequentist approaches for NMA 673 

Rücker developed a method for NMA that is based on graph theory [61,68]. Methods from 674 

graph theory, which is usually applied in electrical networks, were transferred to NMA. Using 675 

this approach, it is possible to handle multiarm trials within a frequentist framework [62]. In 676 

general, the graph-theoretical approach produces similar results to Bayesian NMA (Section 677 

5.2.3) [41,69]. White [87] developed another frequentist method for NMA that is based on 678 

multivariate meta-analysis and meta-regression. 679 
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5.2.3 Bayesian NMA 680 

The Bayesian approach for NMA is also called Bayesian mixed treatment comparison 681 

[47,64,79]. Bayesian NMA can be applied in any connected network and combines all direct 682 

and indirect evidence to obtain treatment effect estimates for all pairwise comparisons in the 683 

network. The same principles outlined in Sections 3.4 and 4.2 are also applicable here. 684 

5.2.4 NMA of time-to event data 685 

In cases involving time-to-event data, evidence synthesis is often based on reported hazard 686 

ratios, which rely on the proportional hazards assumption. This assumption is often 687 

implausible; the most obvious example is when estimated survival functions intersect and can 688 

have an impact on decisions that are based on comparisons of expected survival. In these 689 

cases, NMA based on parametric survival curves [51] or fractional polynomials [39] can be 690 

applied, for which the measure of effect is multidimensional as opposed to a single hazard 691 

ratio. Other emerging methods for time-varying hazard ratios described in the literature may 692 

also be considered [88]. Whatever the method used, prerequisites and assumptions related 693 

to the method must be clearly specified and justified. 694 

5.3 Population-adjusted methods for indirect comparisons 695 

The methods described in Sections 5.1 and 5.2 require the property of similarity, also known 696 

as “constancy of relative effects” [57]. When this assumption does not hold, these methods 697 

do not yield meaningful results. 698 

In order to account for imbalances in effect modifiers between studies, several approaches 699 

have been developed to adjust for imbalance and relax the assumption of "constancy of 700 

relative effects" [56]. In these approaches, a model is specified that has to include all relevant 701 

effect modifiers. The new assumption is then the assumption of "conditional constancy of 702 

relative effects" (conditioned on the included effect modifiers) [57]. It is important that the 703 

relevant effect modifiers that are included are clinically justified and prespecified in a 704 

statistical analysis plan before analysis of the data [45]. In practice, however, one can never 705 

be sure that all the relevant effect modifiers are included. The uncertainty that some relevant 706 

effect modifiers are not included always remains. Therefore, population-adjusted methods 707 

have to be applied with the utmost care. Clear-cut decisions regarding treatment effects on 708 

the basis of population-adjusted indirect comparisons with common comparators are only 709 

possible if the size of the estimated effect is so large that this large effect could not be induced 710 

by bias due to missing effect modifiers alone. This can be formally be achieved by the testing 711 

of a shifted null hypothesis. This means that a conclusion regarding an existing treatment 712 

effect can only be drawn if the confidence interval lies completely above or below a certain 713 

threshold shifted away from the zero effect. This approach accounts for the uncertainty that 714 

some relevant effect modifiers may not be included. 715 

In order to implement the approaches, access to IPD is required for at least one study. In the 716 

case of an analysis by a pharmaceutical company, this is usually limited to their own trials. 717 
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Population-adjusted methods for indirect comparisons are useful in situations in which an 718 

NMA is performed but there is some doubt regarding whether the similarity assumption is 719 

valid for some effect modifiers. This doubt can be resolved by applying a population-adjusted 720 

method that contains the corresponding effect modifiers to confirm the results of the NMA 721 

[45]. 722 

Two early approaches for population-adjusted methods for indirect comparisons were 723 

developed for situations involving two trials, one comparing treatment A versus treatment B 724 

(AB trial) and one comparing A versus C (AC trial), with IPD available for the AB trial (Sections 725 

5.3.1 and 5.3.2). A third approach extended the standard NMA framework (Section 5.3.3). 726 

5.3.1 Simulated treatment comparison 727 

The STC method [10,38] fits an outcome regression model using IPD from the AB trial to 728 

predict the average effect of A versus B in the AC population dependent on the covariates, 729 

and finally a population-adjusted average effect of B versus C in the AC population. The 730 

method also relies on the assumption of "conditional constancy of relative effects", which 731 

means that the model contains all relevant effect modifiers (see above). Furthermore, the 732 

validity of STC depends on the correct specification of the outcome regression model. 733 

5.3.2 Matching-adjusted indirect comparison 734 

The MAIC method [38,70,71] uses reweighting methods similar to inverse propensity score 735 

weighting (Section 6.2) to predict a population-adjusted average effect of B versus C in the AC 736 

population. The method also requires the assumption of "conditional constancy of relative 737 

effects" to hold, which means that the model contains all relevant effect modifiers (see 738 

above). Petto et al. [55] conducted a simulation study to investigate alternative weighting 739 

approaches for MAIC in situations with a common comparator. The study confirmed that none 740 

of the different weighting approaches for MAIC can estimate the true treatment effect if there 741 

are unmeasured effect modifiers. In contrast to STC, MAIC requires correct specification of 742 

the propensity score model to achieve balance for the effect modifiers after weighting. 743 

5.3.3 Multilevel network meta-regression 744 

Phillippo et al. [58] proposed the multilevel network meta-regression (ML-NMR) approach for 745 

population-adjusted indirect comparisons by extending the standard framework for NMA. ML-746 

NMR provides a formulation in a more general framework for which full IPD meta-analysis, 747 

STC and aggregate NMA can be seen as specific instances. As the other population-adjusted 748 

methods, ML-NMR depends on the assumption of “conditional constancy of relative effects” 749 

and on correct specification of the outcome regression model. This approach has some 750 

conceptual advantages in facilitating inferences from larger networks with any number of 751 

treatments. The population-adjusted treatment effects can be estimated for any target 752 

population with given covariate values, and not just the population of the trial for which only 753 

aggregated data are available. 754 
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5.3.4 Population-adjusted methods in comparisons of single-arm trials 755 

STC and MAIC are also frequently applied in situations without a common comparator and 756 

allow the inclusion of single-arm trials. However, analyses without a common comparator rely 757 

on the much stronger assumption of "conditional constancy of absolute effects". This means 758 

that the absolute outcome in the treatment arms is assumed to be constant at any given level 759 

of the prognostic variables and effect modifiers [57]. However, in almost all practical 760 

applications this strong assumption is not feasible. Therefore, evidence syntheses without a 761 

common comparator (i.e., use of a disconnected network) are highly problematic. When 762 

treatment effects are estimated from disconnected evidence networks, methods for analysis 763 

of nonrandomised data should be used, although these are also problematic and require 764 

access to full IPD from the trials included (Section 6). 765 

Key Points IV 

¶ For cases in which the property of similarity does not hold, the usual methods for 

direct or indirect comparisons are invalid. In this scenario, population-adjustment 

methods may be considered as an alternative approach, provided the network is 

connected and there is good evidence a priori that such an adjustment is likely to 

reduce bias. To this end, model and covariate selection strategies should be 

prespecified and based on transparent criteria. 

¶ Access to IPD from at least one treatment arm in some of the studies included is 

required in order to adjust for imbalances between trials. 

¶ Population-adjusted methods for synthesis of relative effects (i.e., in connected 

networks of evidence) depend on the assumption that all relevant effect modifiers 

have been included in the model. Regression-based approaches for population 

adjustment such as STC and ML-NMR further require correct specification of the 

outcome regression model. 

¶ Treatment effects estimated from population-adjusted indirect comparisons are 

associated with additional uncertainty arising from several sources. Owing to the 

greater uncertainty, a large effect estimate is required. This can be formally achieved 

by the testing of shifted hypotheses. 

¶ The target population for which the treatment effect is estimated via a population-

adjusted method refers has to be described in detail. 

¶ Single-arm trials (and, more generally, disconnected networks) require indirect 

comparisons of absolute effects. Such comparisons rely on the additional 

assumption that all relevant prognostic factors have been accounted for, an 

assumption that is unlikely to hold in practice. Therefore, population-adjusted 

methods for indirect comparisons cannot typically produce reliable estimates of 

treatment effects when applied to disconnected networks. 
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6 Comparisons based on nonrandomised evidence 766 

6.1 General considerations 767 

In cases involving an indirect comparison of two treatments for which full IPD information is 768 

available for the treatments observed in different studies, the data situation is similar to that 769 

for any nonrandomised trial. Rather than being observed in one comparative observational 770 

study without randomisation, the data come from different trials. Naive comparisons between 771 

the treatment arms in such situations are prone to bias due to confounding and should not be 772 

performed. 773 

If nonrandomised evidence is available only at the aggregated data level, this is not sufficient 774 

for reliable estimation of treatment effectiveness. If full IPD information for all relevant 775 

confounders and effect modifiers is available, analyses with adjustment for confounding can 776 

be performed. As for the population-adjusted methods (Section 5.3), it is important that the 777 

relevant confounders and effect modifiers that are included are clinically justified and 778 

prespecified in a statistical analysis plan before analysis of the data [31]. The most common 779 

methods for such adjustments involve the use of matching or inverse weighting, which modify 780 

the original sample to avoid confounding. Various approaches for adjusting for confounding 781 

using IPD are available, such as multiple regression, instrumental variables, g-computation and 782 

propensity scores [1,31]. 783 

In the context of estimating the relative effectiveness of treatments, methods based on 784 

propensity scores, including matching, stratification, conditional adjustment and the inverse 785 

probability of treatment weighting, are commonly used [84]. Section 6.2 provides more details 786 

regarding the application of methods based on propensity scores. The main principles for 787 

adjusting for confounding by means of propensity scores are also valid for the other 788 

approaches. 789 

Similar to the population-adjusted methods with a common comparator that are based on IPD 790 

and aggregated data, the methods for indirect comparisons with adjustment for confounding 791 

on the basis of IPD all require that there are no unmeasured confounders. In other words, all 792 

relevant confounders and effect modifiers have to be included in the model chosen. Again, it 793 

is important that the relevant effect modifiers that are included are clinically justified and 794 

prespecified in a statistical analysis plan before analysis of the data. However, the uncertainty 795 

that a relevant confounder or effect modifier is not included will always remain. Therefore, 796 

clear-cut recommendations regarding treatment effects on the basis of indirect comparisons 797 

with adjustment for confounding on the basis of IPD are only possible if the size of the 798 

estimated treatment effect is so large that the effect could not be induced by bias due to 799 

missing confounders or effect modifiers alone. This can be formally achieved by testing of a 800 

shifted null hypothesis. This means that a conclusion for an existing treatment effect can only 801 

be drawn if the confidence interval lies completely above or below a certain threshold shifted 802 

away from the zero effect. This approach accounts for the uncertainty that some relevant 803 

confounders or effect modifiers may not be included. 804 
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6.2 Propensity scores 805 

A propensity score is the conditional probability of assignment to a particular treatment given 806 

a vector of observed covariates. When using propensity scores, three assumptions regarding 807 

positivity, overlap and balance must be met [90]: 808 

1) Patients in both groups must be theoretically eligible for both treatments of interest 809 

(positivity). 810 

2) There must be sufficient overlap of the data available, as measured by the propensity 811 

score, between the populations receiving the treatments of interes. 812 

3) The populations in the groups being compared must be sufficiently balanced after 813 

adjustment for confounding. 814 

Relevant patient groups are specified according to the research question. To meet the 815 

positivity assumption, patients who, for instance, have a contraindication to one of the 816 

treatments investigated must not be included in the analysis. Sufficient overlap means that 817 

the distribution of patients among the different propensity scores must be similar. After 818 

adjustment for confounding, the populations in the groups being compared must be 819 

sufficiently balanced. This means that the groups compared do not differ substantially 820 

regarding the relevant confounders. The positivity, overlap and balance must be 821 

demonstrated before conclusions are drawn for treatment effects estimated by the use of 822 

propensity scores. 823 

The degree of overlap and balance between the groups greatly depends on the model chosen 824 

for the propensity score. If an insufficient degree of overlap or balance is obtained by means 825 

of propensity scores, sufficient adjustment for confounders cannot be achieved and 826 

consequently no robust treatment comparisons can be made [90]. In this case, switching to 827 

multiple regression is not a solution, as this would require inappropriate extrapolations in 828 

areas with no observed data [90]. The degree of overlap and balance can also be influenced 829 

by "trimming", which involves excluding patients on the basis of propensity scores without 830 

overlap [29]. If sufficient overlap and balance can be achieved by trimming, the final 831 

overlapping and balanced population of patients is ultimately the target population to whom 832 

the estimated effects apply. Therefore, this target population should be described in detail. 833 

An investigation of whether this target population sufficiently represents the population 834 

selected for the original research question is required. If this is not the case, the estimated 835 

effects may only apply to a different population to that for the original research question [16]. 836 

https://doi.org/10.1093/biomet/70.1.41
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Key Points V 

¶ Adjustment methods for confounding are based on IPD; all methods require that 

there are no unmeasured confounders and no unmeasured effect modifiers. 

¶ The model and covariate selection strategies to adjust for confounding should be 

prespecified and based on transparent criteria. 

¶ Propensity score applications require sufficient positivity, sufficient overlap and 

sufficient balance in the populations considered; if this cannot be achieved, 

adequate adjustment for confounding is not possible and the results from the 

corresponding analysis do not provide a meaningful estimate of the treatment 

effect. 

¶ If a propensity score approach is applied with trimming, the final target population 

must be described in detail. 

¶ Treatment effects estimated from nonrandomised data are associated with 

additional uncertainty arising from a number of sources. Owing to the greater 

uncertainty, a large effect estimate is required. This can be formally achieved by the 

testing of shifted hypotheses. 
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III Conclusion 837 

This guideline presents methods that are used to combine evidence to determine the relative 838 

clinical effectiveness of treatments. The guideline directs assessors towards the pathway that 839 

will ideally provide the best estimate of relative effectiveness with the least uncertainty. The 840 

most robust evidence comes from adequate RCTs with low RoB. 841 

Pairwise meta-analyses combine data for which the treatment and comparator are the same 842 

in all the trials included. Both frequentist and Bayesian frameworks offer approaches that are 843 

suitable provided the underlying assumptions are adequately met. When direct evidence from 844 

RCTs is not available or more than two treatments are of interest and it is necessary to perform 845 

indirect treatment comparisons, uncertainty for the treatment-effect estimate increases. 846 

Indirect comparisons are commonly used in comparative effectiveness analyses for which 847 

there is a lack of trials or evidence gathered for all the comparators of interest. When 848 

conducting such analyses, the appropriate method to use is one that preserves randomisation 849 

(i.e., an adjusted indirect comparison). NMA can combine both direct and indirect evidence 850 

within the network. Various frequentist and Bayesian methods have been proposed for this 851 

purpose. The more evidence that is included in a network for one treatment, the more precise 852 

the estimates may be, but as complexity increases so does the potential for violation of the 853 

assumptions, which can influence the reliability of the results. Whatever the method used, 854 

prerequisites and assumptions related to that method must be clearly specified and justified. 855 

If IPD are available, further analyses can be undertaken. Approaches that account for 856 

differences in population characteristics between studies are available. MAIC reweights the 857 

outcomes to an alternative population. However, this method relies on accounting for all 858 

relevant effect modifiers in the model, which is difficult to ensure. The same applies to STC, 859 

which is a regression-based approach that fits the outcome to an alternative population. 860 

ML-NMR is a recent extension of regression-based approaches that combines IPD evidence 861 

with aggregated evidence. 862 

A number of statistical approaches have been proposed for dealing with cases in which 863 

nonrandomised evidence (e.g., single-arm trials, comparative observational studies and 864 

registry data) is used to inform an estimate of relative effectiveness. Although it is possible to 865 

provide summaries of evidence syntheses generated in this way, the certainty of the results 866 

provided by these techniques remains controversial. Results from such analyses are more 867 

likely to suffer from bias and are more likely to underestimate the true uncertainty and to 868 

depend on untested assumptions in comparison to syntheses with RCT evidence alone. 869 

Therefore, any analyses extending the network using single-arm or nonrandomised evidence 870 

should include sensitivity analyses and an examination of the assumptions (using a tool such 871 

as Risk of Bias in Nonrandomised Studies of Interventions (ROBINS-I)) and should provide 872 

appropriate caveats for users. The use of single-arm or nonrandomised evidence usually 873 

threatens the internal validity of results. Therefore, it is incumbent on the assessor to judge 874 

whether this evidence is sufficient for adequate estimation of the relative treatment 875 

effectiveness. For some interventions, single-arm or nonrandomised evidence may be the only 876 
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evidence available for consideration. However, it may well be necessary to deem that this 877 

evidence is insufficient for estimation of the relative treatment effectiveness for decision-878 

making. 879 

In many cases the conditions will not be ideal for the use of any of the methods presented in 880 

this guideline to produce unbiased estimates of relative effectiveness. Therefore, there should 881 

be very careful consideration of the underlying assumptions when making inferences. Input 882 

from a statistician with specific expertise in this area should be sought for a critical assessment 883 

of the methodological approach used, any assumptions potentially violated and the 884 

corresponding uncertainty of the results. 885 
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Related EUnetHTA documents (under development) 886 

¶ EUnetHTA 21 Practical Guideline D4.3.1: Direct and Indirect Comparisons. 887 

A practical guideline for assessors and co-assessors that describes possible approaches 888 

and specific instructions for action to solve methodological problems related to the 889 

topics included in the present methodological guideline. 890 

¶ EUnetHTA 21 Practical Guideline D4.2.1: Scoping Process. 891 

A practical guideline for assessors and co-assessors that describes the methods and 892 

principal steps of the scoping process. 893 

¶ EUnetHTA 21 Practical Guideline D4.5.1: Applicability of Evidence. 894 

A practical guideline for assessors and co-assessors that describes how to consider 895 

complementary analyses and how to handle multiplicity issues. 896 

¶ EUnetHTA 21 Practical Guideline D4.6.1: Validity of Clinical Studies. 897 

A practical guideline for assessors and co-assessors that describes possible approaches 898 

and specific instructions for action when assessing the certainty of results coming from 899 

individual studies whether they are RCTs or other types of studies. 900 
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