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Summary and table with main recommendations 

Introduction 

Diagnostic tests are used for a variety of purposes including to: determine whether or not 
an individual has a particular target condition; provide information on a physiological or 
pathological state, congenital abnormality, or on a predisposition to a medical condition or 
disease; predict treatment response or reactions; define or monitor therapeutic measures. 
Ideally an evaluation should be undertaken to assess the clinical utility of a test. Such an 
assessment is generally not supported by appropriately designed studies or by long term 
outcome data. In the absence of clinical utility data, diagnostic tests are evaluated on the 
basis of test accuracy: the ability of the test to correctly determine the disease status of an 
individual. Test accuracy is not a measure of clinical effectiveness and improved accuracy 
does not necessarily result in improved patient outcomes. A number of metrics are 
available to describe the characteristics of a diagnostic test, such as the sensitivity, 
specificity, diagnostic odds ratio, predictive values, likelihood ratios, and the receiver 
operator characteristic (ROC) curve. Diagnostic tests may also be subject to a threshold 
effect, whereby the translation of a test result into a dichotomous positive/negative result is 
not uniform across studies. 

Problem statement 

Diagnostic test accuracy may be evaluated across a number of studies; to improve the 
precision of the estimate, it may be desirable to combine data from a number of studies in 
a meta-analysis. This guideline reviews available methods for the meta-analysis of 
diagnostic test accuracy studies that report a dichotomous outcome, and discusses types 
of bias that are encountered in such meta-analyses. 

Methods for meta-analysis of diagnostic test accuracy studies 

The hierarchical summary receiver operator characteristic (HSROC) and bivariate random-
effects techniques are considered the most appropriate methods for pooling sensitivity and 
specificity from multiple diagnostic test accuracy studies. Both approaches take into 
account any correlation that may exist between sensitivity and specificity. The two 
methods offer equivalent results under certain conditions, such as when no covariates are 
included. These two methods are considered to be more statistically rigorous than the 
alternative Moses-Littenberg approach. 

The most appropriate choice of meta-analytical approach is context specific and also 
depends on the observed heterogeneity across studies, and the quantity of evidence 
available. The type of summary data that should be reported depends on whether or not 
there is a threshold effect. If a threshold effect is present and if it explains most of the 
observed heterogeneity, then a summary ROC curve can be presented. Alternatively, a 
summary point of sensitivity and specificity with corresponding confidence region should 
be reported. 

Sources of bias 

Numerous sources of bias can affect the summary estimate of diagnostic test accuracy: 
publication bias; heterogeneity; spectrum bias; verification bias; choice of cut-off points for 
dichotomising a test result. The accuracy reported in studies can also be influenced by 
underlying disease prevalence, dependence between combined tests, and missing data. 
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When conducting a meta-analysis, potential sources of bias should be identified and 
investigated in terms of how they influence the summary estimates of diagnostic test 
accuracy. Studies included in a meta-analysis should be appraised in terms of study 
quality and whether or not they are sufficiently equivalent to justify a meta-analysis. 

 

 

Recommendations The recommendation is 
based on arguments 
presented in the 
following publications 
and / or parts of the 
guideline text 

1. Pooling studies of diagnostic test accuracy should only 
be undertaken when there are sufficient studies 
available. When only two studies are available, it is not 
recommended to undertake a meta-analysis; reporting 
should be restricted to a narrative description of the 
available evidence. 

Section 2.1.6 

2. The quality of studies being pooled should be assessed 
using a recognised and validated quality assessment 
tool. 

Section 2.6.2 

3. Pooled studies should be equivalent in terms of the index 
test, the reference standard, the patient population and 
the indication. 

Section 2.1 

4. Where important differences are identified across studies 
in terms of disease spectrum, study setting, or disease 
prevalence, these should be accounted for by including 
covariates. 

Section 2.4 

5. Where potential study differences occur, but cannot be 
readily accounted for, such as verification bias, these 
should be clearly identified and the potential impacts 
determined. 

Section 2.4 

6. The appropriate methods of meta-analysis are the 
hierarchical SROC and bivariate random effects 
techniques, unless there is an absence of heterogeneity 
in either the false positive rate or the true positive rate, in 
which case two separate univariate meta-analyses may 
be more appropriate. 

Section 2.1.6 

7. The appropriate approach to meta-analysis is defined 
with respect to the quantity of data, between-study 

Section 2.1.6 
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heterogeneity, threshold effects, and the correlation 
between the true positive rate and the false positive rate. 

8. The reporting of meta-analysis should include all the 
information that justifies the choice of analytical approach 
and supports the exclusion of alternative approaches. 

Section 2.2 
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1. Introduction 
1.1. Central terms and concepts  
This section describes the main concepts in diagnostic testing in terms of the test itself, 
and the measures used to describe the accuracy of a test. Test measures may be global 
(overall test performance) or specific (single aspect of accuracy), and they may be 
conditional (dependent on prevalence) or unconditional (independent of prevalence). 

1.1.1. Diagnostic test, gold- and reference standards 
Diagnostic test accuracy studies estimate the ability of a diagnostic test to correctly 
discriminate between patients with and without a particular target condition. To evaluate 
the accuracy of a diagnostic test (also called the index test), it must be compared with a 
reference standard test or a gold standard test.1 A gold standard, which has perfect 
discriminatory power between positive and negative status, rarely exists. Hence the gold 
standard is typically replaced by a reference standard that approximates the gold standard 
as closely as possible.1 In some cases, there may not be an appropriate reference 
standard. When analysing test accuracy, the same reference standard should be applied 
to the whole study population. 

Test accuracy for a single study population that have been subject to a diagnostic test for 
a given target condition is generally presented in a 2x2 table indicating the test result (as 
positive or negative) and the true status with respect of the reference status of those 
tested (as positive or negative) (see Figure 1). 

 
Figure 1. The 2x2 table 

  True status  

  Positive Negative  

Test 
result 

Positive True positive 
(TP) 

False positive 
(FP) 

 

Negative False negative 
(FN) 

True negative 
(TN) 

 

 
 

1.1.2. Sensitivity and specificity 
Sensitivity and specificity are the most commonly used measures of diagnostic test 
performance.2  

• Sensitivity (Sn) – the percentage of people with the target condition that are 
identified as having the condition by the diagnostic index test  
 

Sn = TP x 100 / (TP + FN)   (1) 
 

• Specificity (Sp) – the percentage of people that do not have the target condition 
that are identified as not having the condition by the diagnostic index test  
 

Sp = TN x 100 / (TN + FP)   (2) 
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A perfect test would have 100% sensitivity and specificity. However, in reality the two 
measures are almost always negatively correlated, such that increased sensitivity is 
associated with decreased specificity (see Figure 2). The negative correlation is often a 
function of the threshold beyond which a test result is considered a positive. For example, 
an increased threshold will result in fewer false positives (increased specificity) but more 
false negatives (reduced sensitivity). Different studies evaluating test accuracy may use 
the same test, but apply a different threshold for defining a positive test result. Decreasing 
the threshold decreases specificity but increases sensitivity, while increasing the threshold 
decreases sensitivity but increases specificity. By varying the threshold for a positive test, 
a correlation between sensitivity and specificity is observed which is known as a threshold 
effect. 

 
Figure 2. Test threshold and impact on diagnostic accuracy 

 

Notes: the test result values are for a hypothetical biomarker. There is an overlap between values that can be 
obtained for patients with and without the disease of interest. Hence perfect classification is not possible with 
this test. 

 

Sensitivity and specificity are generally assumed to be independent of disease prevalence, 
although this is not strictly the case (see section 2.4.6). The measures have no clinical 
meaning and they do not apply to test results that are reported as levels rather than a 
dichotomous outcome. The sensitivity is also referred to as the true positive rate (TPR), 
while 1 minus the specificity (1-Sp) is referred to as the false positive rate (FPR). 

Sensitivity and specificity are perhaps the most commonly reported measures of 
diagnostic test accuracy. As a concept they are relatively simple to understand. They are 
considered to be specific and unconditional measures of accuracy. However, sensitivity 
and specificity are summary test characteristics, and do not provide information about a 
specific patient. In other words, they provide an ‘on average’ accuracy for a given test. 
Sensitivity and specificity may be reported as percentages or proportions. 
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It is generally the case that for a test to be useful at ruling out a disease it must have high 
sensitivity, and for it to be useful at confirming a disease it must have high specificity.3 The 
Sn-N-Out (high sensitivity, negative, rules out) and Sp-P-In (high specificity, positive, rules 
in) mnemonics are sometimes used to make quick diagnostic decisions, although these 
rules are serious simplifications and should be used with caution.4 A high sensitivity 
implies very few false negatives, therefore nearly all patients labelled as negative are 
correctly assigned. Similarly a high specificity implies very few false positives, meaning 
that nearly all patients labelled positive are genuinely positive. However, a high specificity 
combined with a poor sensitivity may not be an informative test as many genuine positives 
will test negative. Ordinarily a high specificity can be used to rule in positives, but when 
coupled with a poor sensitivity, few genuine positives will be captured. Hence, care must 
be taken when interpreting sensitivity and specificity values, and both measures should be 
reported together when considering the accuracy of a test. 

Sensitivity and specificity are sometimes presented simultaneously as Youden’s Index (Jc), 
which is intended as a means for optimising the cut-off point (c) for a test: 

Jc = Snc + Spc -1    (3) 

The optimal cut-off point, c*, is the cut-off point at which Jc is maximised.5 However, this 
optimisation is based on the assumption that false-positives and false-negatives are 
equally undesirable. In reality, the incorrect classifications of healthy and diseased persons 
may not be considered equally undesirable.5 For example, for a life-threatening disease 
where early detection may significantly improve outcomes, there may be a preference to 
minimise false-negatives.  

The interpretation of sensitivity and specificity can be problematic when evaluating tests 
that are applied repeatedly, such as for continuous monitoring of a patient’s status.6  

 

1.1.3. Likelihood ratios 
The likelihood ratio (LR) associated with a positive test result is the probability of a positive 
finding in patients with the target condition divided by the probability of a positive test result 
in patients who do not have the target condition. Multiplying the LR by the pre-test odds of 
having the target condition gives the post-test odds of having the condition. The LR can be 
expressed for positive and negative test results: 

Likelihood ratio for positive results (LR+) = Sn / (100 - Sp) (4) 
 
Likelihood ratio for negative results (LR-) = (100 – Sn) / Sp (5) 

As the likelihood ratios are a function of sensitivity and specificity, it is generally assumed 
that they do not vary with disease prevalence. Likelihood ratios can be calculated for 
multiple levels of test result, which can be useful in diagnostic tests for which results are 
presented on a continuous scale.2 Like sensitivity and specificity, these measures are 
considered to be specific and unconditional measures of accuracy. 

 

By applying the Bayes’ theorem, the pre-test probability of disease (e.g., the prevalence of 
disease) can be converted into a post-test probability using the likelihood ratios in 
conjunction with the test result. As a rule of thumb, a likelihood ratio of between 0.2 and 5 
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gives no more than weak evidence to rule the disease in or out. A likelihood ratio of 
between 5 and 10, and between 0.1 and 0.2 gives moderate evidence to rule the disease 
in or out, respectively. A likelihood ratio of greater than 10 or less than 0.1 gives strong 
evidence to rule the disease in or out, respectively.2 These ranges are only intended to 
provide an approximate rule of thumb and consideration must be given to the context of 
the results. It should also be noted that quite different combinations of sensitivity and 
specificity can produce the same likelihood ratio values. 

 

1.1.4. Diagnostic odds ratio 
The diagnostic odds ratio (DOR) provides a single measure of test performance that is 
assumed to be independent of the prevalence of the target condition. 

DOR = (TP / FN) / (FP / TN)   (6) 

The diagnostic odds ratio describes the odds of a positive test results in participants with 
the disease compared with the odds of a positive test results in those without the disease. 
A single diagnostic odds ratio corresponds to a set of sensitivities and specificities 
depicted by a symmetrical receiver operating characteristic curve (see section 2.2).3 The 
DOR is not useful in clinical practice. As it is a single measure assumed to be independent 
of prevalence, the DOR is referred to as a global and unconditional measure.  

 

1.1.5. Receiver Operating Characteristic (ROC) curves 
A diagnostic test may return values on a continuous scale, but this must then be converted 
into a dichotomous positive/negative diagnosis based on a cut-off point. The choice of cut-
off point on the scale will impact on the test’s accuracy. A threshold at one extreme will 
result in few positives, while a threshold at the other extreme will result in many positives 
(see Figure 2). A ROC curve is a graphical plot used to represent the performance of a 
test over a range of threshold settings (see Figure 3).3 That is, the curve shows the impact 
on sensitivity and specificity of varying the threshold for which a test result is labelled as a 
positive rather than a negative. A ROC curve plots the test sensitivity as a function of the 
false-positive rate (100 – Sp). As with the DOR, the ROC curve is a single measure 
assumed to be independent of prevalence, and hence is referred to as a global and 
unconditional measure. 
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Figure 3. Example of a Receiver Operating Characteristic (ROC) curve 
 

 

Notes: the ROC curve is based on the distributions for the hypothetical test described in Figure 1. The data 
labels refer to cut-off point values for a positive test result. A high cut-off point results in low sensitivity and high 
specificity. The area in grey represents the Area Under the Curve (AUC). 

 

The diagonal line from bottom-left to top-right in Figure 3 represents a test that is 
essentially uninformative, as the ability to detect genuine cases is no better than chance 
allocation to positive and negative. The upper left-hand corner represents a test with 
sensitivity and specificity of 100%, in other words a perfect dichotomous test. Clearly a 
desirable test is as close as possible to the upper left-hand corner and as far from the 
diagonal as possible. The cut-off point that yields the most upper-left point may be 
appropriate for clinical practice, presuming it is feasible and has been validated in 
(preferably multiple) independent samples. The upper left point, or maximal joint sensitivity 
and specificity, is also known as Q*. It is reported as the sensitivity where the line of 
symmetry intersects the ROC curve, The Q* point may be of little relevance if it is not 
possible to implement test thresholds that result in maximal joint sensitivity and specificity. 
Similarly, not all threshold values may be possible in practice, so the ROC curve may not 
be able to span the entire range of sensitivity and specificity in practice. 

An area under the curve (AUC) of 1 represents a perfect test, while an AUC of 0.5 
represents an uninformative test. The AUC is sometimes reported as a single summary 
measure of diagnostic accuracy and gives an indication of how close to perfect, or 
uninformative, a test is. Two tests, one with high sensitivity and the other with high 
specificity, may have the same AUC. The AUC does not provide any information about 
how the patients are misclassified (i.e., false positive or false negative) and should 
therefore be reported alongside another measure of test performance, such as likelihood 
ratios or predictive values.2 The AUC is not useful in clinical practice as it summarises 
performance over a range of possible thresholds, whereas in practice a single pre-
specified threshold applies. It should be noted that ROC curves of different shapes can 
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have the same AUC value, so an AUC value does not represent a set of unique 
combinations of sensitivity and specificity.7 

 

1.1.6. Predictive values 
The positive predictive value (PPV) is the proportion of patients with a positive test who 
actually have the disease, and the negative predictive value (NPV) is the proportion of 
patients with a negative test result who are actually free of the disease.2 

𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑆𝑆𝑆𝑆.𝑃𝑃
𝑆𝑆𝑆𝑆.𝑃𝑃+(1−𝑆𝑆𝑆𝑆).(1−𝑃𝑃)

    (7) 
 
𝑁𝑁𝑃𝑃𝑃𝑃 = 𝑆𝑆𝑆𝑆.(1−𝑃𝑃)

(1−𝑆𝑆𝑆𝑆).𝑃𝑃+𝑆𝑆𝑆𝑆.(1−𝑃𝑃)
    (8) 

Where P is the estimated prevalence of disease, also known as the pre-test or prior 
probability of disease.8  

A patient belonging to a population with a higher prevalence of disease will have a higher 
PPV than a patient from a lower prevalence population. Predictive values have a strong 
clinical utility. However, they vary with disease prevalence and are not useful in situations 
where test results are reported on multiple levels rather than a dichotomous outcome. The 
predictive values are referred to as specific conditional measures of test accuracy. 

 

1.1.7. Diagnostic accuracy 
A single overall measure of test accuracy is also used which is expressed as the 
proportion of correctly classified cases:9 

 Diagnostic accuracy = (TP + TN) / (TP + FP + FN + TN) (9) 

A global, conditional measure of accuracy, it is not often used and is not pooled across 
studies. 

 

1.2. Problem statement 
Diagnostic tests are used for a variety of purposes including to: determine whether or not 
an individual has a particular target condition; provide information on a physiological or 
pathological state, congenital abnormality, or on a predisposition to a medical condition or 
disease; predict treatment response or reactions; define or monitor therapeutic measures. 
As such, the test is not a treatment, but influences a clinician when deciding on the 
appropriate course of action for a particular patient. Timely or correct detection of disease 
does not necessarily lead to timely or correct treatment of disease, hence improved 
diagnostic test accuracy is not synonymous with improved patient outcomes. Diagnostic 
tests can change patient outcomes by changing diagnostic and treatment decisions, 
impacting on timely treatment, modifying patient perceptions and behaviour, or putting 
patients at risk of direct harm.10  
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To study the association between the accuracy of a diagnostic test with regard to 
outcomes, a follow-up is required, but this may be at significant risk of confounding11 
unless studied in randomised controlled trials (RCTs). In the area of health technology 
assessment, diagnostic test accuracy is sometimes used as a surrogate for patient-
relevant outcomes, although some agencies require long-term outcome data on patient 
outcomes.12 In practice, diagnosis may also depend on factors other than just the results 
of a single diagnostic test, such as clinical history and additional testing, and hence other 
factors will impact on diagnosis, treatment and outcomes.13 A linked evidence approach, 
whereby patient outcomes can be associated with the diagnostic test, may be a pragmatic 
solution although in practice there are often insufficient data to enable this approach.14 It 
should also be noted that diagnostic tests may be relatively invasive (e.g., sentinel lymph 
node biopsy) or harmful to patients (e.g., exposure to ionising radiation), and that this 
information is not captured in the assessment of test accuracy.  

When the sensitivity of a new diagnostic test is compared with an existing test, the 
detected cases may be different to those detected by the existing test. Results from 
treatment trials based on patients detected by the old test may not be generalisable to the 
cases detected by the new test. Unless clinicians can be satisfied that the new test detects 
the same spectrum and subtype of disease as the old test or that treatment response is 
similar across the spectrum of disease, it is possible that the new test will result in different 
outcomes.15  

The impact of a diagnostic test can be viewed according to a number of domains (see 
Table 1).16-18 The tiered model has been tailored to radiological testing, for which the 
resolution and sharpness of test images are relevant. For other types of tests, the 
resolution and sharpness may be analogous to the precision of the test.  

Table 1. Tiered model of diagnostic efficacy16-18 

Stage of efficacy Definition 

Technical capacity Resolution, sharpness, reliability 

Diagnostic 
accuracy Sensitivity, specificity, predictive values, ROC curves 

Diagnostic impact Ability of a diagnostic test to affect the diagnostic workup 

Therapeutic 
impact Ability of a diagnostic test to affect therapeutic choices 

Patient outcomes Ability of a diagnostic test to increase the length or 
quality of life 

Societal outcomes Cost-effectiveness and cost-utility 

 

The stages or tiers of efficacy answer a variety of questions about a diagnostic test, from 
whether or not it can work to whether or not it is worth using. This guideline is restricted to 
methodologies for summarising diagnostic accuracy. It must be noted that diagnostic test 
accuracy is not in itself a measure of clinical effectiveness, and improved accuracy does 
not necessarily lead to improved patient outcomes. Meta-analysis of diagnostic test 
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accuracy therefore estimates the pooled test accuracy and not pooled clinical 
effectiveness. Estimating clinical utility requires appropriate studies with longer term 
patient outcomes and is not considered in this guideline. 

 

1.3. Objective(s) and scope of the guideline 
 

This guideline presents a review of the available methods for the meta-analysis of 
diagnostic test accuracy studies. The aim of the guideline is to highlight the circumstances 
in which it is appropriate to use each of the approaches. The guideline will also elaborate 
on: 

• thresholds for positive tests 
• fixed and random effects approaches 
• heterogeneity across studies 
• sample sizes 
• the quality and quantity of evidence required for a meta-analysis  
• the case where multiple diagnostic tests may be evaluated and compared 
• issues regarding study selection 
• the types of bias that might arise when reviewing diagnostic test accuracy 

data.  

The guidance is restricted to methods for pooling results from diagnostic tests that report 
dichotomous results (i.e., the test result is either positive or negative), as opposed to tests 
that report results on a continuous scale or as a number of discrete levels. 

The guideline does not address issues relating to systematic reviews and meta-analysis 
that are not restricted or unique to diagnostic test accuracy studies. These issues include: 
bibliographic searching and study types. These issues are common to any meta-analysis 
and are comprehensively described elsewhere.19;20 It is assumed that the meta-analysis is 
undertaken using comparable studies derived from a systematic review conducted 
according to best practice. This guideline also does not consider analysis of intermediate 
or longer term outcomes in relation to diagnostic test performance. 

 

 

1.4. Related EUnetHTA documents 
 

The following EUnetHTA methodological guidelines are relevant to the present guideline: 

• Applicability of evidence in the context of a relative effectiveness assessment of 
pharmaceuticals (February 2013) 

• Direct and indirect comparisons (February 2013) 

It should be noted that the EUnetHTA guidelines were developed for the relative 
effectiveness assessment of pharmaceuticals. The extent to which the principles contained 
in the guidelines are also relevant to the meta-analysis of diagnostic test accuracy studies 
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will depend on the nature of the diagnostic test being evaluated. In general, the guideline 
on the applicability of evidence is most likely to be of use when pooling data from 
diagnostic test accuracy studies. 

Also relevant are the assessment elements from the HTA Core Model Application for 
Diagnostic Technologies: 

• Assessment element tables for HTA Core Model Application for Diagnostic 
Technologies (2.0), meka.thl.fi/htacore/model/AE-tables-diagnostics-2.0.pdf 

file://srv05/share$/Versorgungsqualit%C3%A4t/10_International/02-EUnetHTA/EUnetHTA_JA2/WP7/SG3%20GL/GL%20Meta%20anal%20diagn%20studies/Guideline%20Drafts/meka.thl.fi/htacore/model/AE-tables-diagnostics-2.0.pdf
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2. Analysis and discussion of the methodological issue 
2.1. Methods for meta-analysis of diagnostic accuracy studies 
A variety of methods are available for pooling data from multiple studies of diagnostic test 
accuracy. The relevance of each method is influenced by the type of study data available 
(e.g., individual patient data, 2x2 tables, summary measures such as sensitivity and 
specificity). Certain data may not be available for all studies, which will also influence the 
approach to pooling data. The most straightforward approach is a simple pooling where 
the 2x2 tables from all of the studies are combined with no weighting.7 This method 
assumes no correlation between sensitivity and specificity, no between-study 
heterogeneity, and no variability in the diagnostic threshold. As such, simple pooling can 
be described as a naive approach and will not be considered in these guidelines. 

It is assumed that a meta-analysis is only undertaken when the available studies are 
considered equivalent in terms of the index test, reference standard, the patient 
population, and the indication. Where the studies are not equivalent it is not recommended 
that a meta-analysis is undertaken. A lack of study equivalence gives rise to various types 
of bias which are discussed in Section 2.4. 

 

2.1.1. Separate random-effects meta-analyses of sensitivity and specificity 
Sensitivity and specificity can be individually summarised across studies based on their 
logit transforms.21 This approach is a random-effects method that allows for between-study 
heterogeneity in the two measures, but ignores the potential correlation between the two. 
The logit transforms are used in the analysis on the basis that an assumption of a normal 
distribution between studies is more reasonable on the logit scale, with an inverse logit 
transformation applied to the results to return them to a [0,1] interval. In addition to the 
point estimates of sensitivity and specificity, this approach also allows for the estimation of 
a ROC curve using the ratio of estimated between-study variances. This approach has 
been suggested for situations when there is evidence of no correlation between sensitivity 
and specificity across studies.22 However, in practice, situations where it is plausible that 
there is no correlation are highly unlikely to arise. 

2.1.2. Separate meta-analyses of positive and negative likelihood ratios 
As likelihood ratios are ratios of probabilities, positive and negative likelihood ratios can be 
pooled separately by meta-analysis using the same mathematical methods as risk ratios.21 
Approaches can be based on either fixed-effect or random-effects models. These methods 
ignore the possible correlation between positive and negative likelihood ratios, and thus 
pooled estimates may produce values that are not possible in reality (e.g., both ratios 
above or below 1.0).23 Should they be required, pooled estimates of the likelihood ratios 
can be computed from summary estimates of sensitivity and specificity derived using any 
of the other methods described in this section. Meta-analysis of predictive values is 
possible, although it is usually discouraged because of the influence of disease 
prevalence. 

2.1.3. Moses-Littenberg summary receiver operating characteristic (SROC) curve 
The Moses–Littenberg fixed-effects method is historically the most commonly used 
method for meta-analysis of diagnostic tests. A straight line is fitted to the logits of the false 
positive rate (FPR) and true positive rate (TPR) of each study, and its slope and intercept 
give the parameters of the SROC curve.22 The SROC curve summarises pairs of 
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sensitivity and specificity from multiple studies. The least squares linear fit may be 
unweighted or weighted, although in the latter case there is uncertainty as to which 
weighting method to use.21 The linear fit is then back-transformed to be plotted as the 
SROC curve. The Moses-Littenberg may be appropriate if all the observed heterogeneity 
is due to a threshold effect. That is, where all of the observed heterogeneity is due to the 
use of different thresholds across the included studies. 

This method allows for the correlation between sensitivity and specificity, but is not 
statistically rigorous, as the assumptions of linear regression (constant variance, covariate 
measured without error) do not hold.21 Furthermore, as it is based on an analysis of the 
DOR, summary measures of sensitivity and specificity are not directly available. By 
selecting a value for sensitivity, it is possible to compute the corresponding specificity. It is 
common to report the sensitivity and specificity at the Q-point(i.e., where the SROC curve 
intersects the diagonal that runs from the top left to bottom right of the ROC plot; sensitivity 
equals specificity on this diagonal).24 However, the values at the Q-point may bear little 
relation to the values observed in the original studies used in the meta-analysis. 

2.1.4. Hierarchical summary ROC (HSROC) model 
The HSROC model for combining estimated pairs of sensitivity and specificity from 
multiple studies is an extension of the Moses-Littenberg fixed-effects summary ROC 
(SROC) model.25 The HSROC model more appropriately incorporates both within- and 
between-study variability, and allows greater flexibility in the estimation of summary 
statistics. The HSROC model describes within-study variability using a binomial 
distribution for the number of positive tests in diseased and not diseased patients. 

The model is specified on two levels: the within study model and the between study model. 
The within study model takes the following form:26  

logit�𝜋𝜋𝑖𝑖𝑖𝑖� = �𝜃𝜃𝑖𝑖 + 𝛼𝛼𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖�exp�−𝛽𝛽𝑋𝑋𝑖𝑖𝑖𝑖�   (10) 

The variable 𝜋𝜋𝑖𝑖𝑖𝑖 is the probability that a patient in study i with disease status j will return a 
positive test result. By defining j=0 for a patient without the disease and j=1 for a patient 
with the disease, it follows that for study i, 𝜋𝜋𝑖𝑖0 is the false positive rate and 𝜋𝜋𝑖𝑖1 is the true 
positive rate. The parameter 𝑋𝑋𝑖𝑖𝑖𝑖 is a dummy variable for the true disease status of a 
patient in study i with disease status j. The parameters 𝜃𝜃𝑖𝑖and 𝛼𝛼𝑖𝑖 are the cut-off point and 
accuracy parameters, respectively, and are allowed to vary between studies. Finally, β is a 
scale parameter for modelling the possible asymmetry in the ROC curve. 

The between-study model allows the parameters 𝜃𝜃𝑖𝑖and 𝛼𝛼𝑖𝑖 to vary between studies. The 
following parameter definitions include a common covariate Z which affects both 
parameters, although they can be modelled without covariates or with multiple covariates: 

𝜃𝜃𝑖𝑖~N�Θ + γZi,σθ2�    (11) 

𝛼𝛼𝑖𝑖~N(Λ + λZi,σα2)    (12) 

The model was originally formulated in a Bayesian framework, and hence also included 
specification of priors.25 The model produces an SROC curve by allowing the cut-off point 
parameter to vary while holding the accuracy parameter at its mean value. 
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2.1.5. Bivariate random-effects meta-analysis for sensitivity and specificity 
As with the HSROC method, the bivariate approach preserves the two-dimensional nature 
of the original data, with pairs of sensitivity and specificity jointly analysed.24 Like the 
HSROC approach, this method also incorporates any correlation that might exist between 
these two measures using a random-effects approach. Evaluation of the bivariate model 
requires specification of an appropriate transformation (e.g., a generalised linear mixed 
model using the logit-transformation).27 Explanatory variables can be added to the 
bivariate model and lead to separate effects on sensitivity and specificity, rather than a net 
effect on the odds ratio scale as in the SROC approach.24  

The bivariate model is specified as follows:26  

�
𝜇𝜇𝐴𝐴𝑖𝑖
𝜇𝜇𝐵𝐵𝑖𝑖�~N��

𝜇𝜇𝐴𝐴
𝜇𝜇𝐵𝐵� , Σab�    (13) 

ΣAB = �
σA2 σAB
σAB σB2

�    (14) 

The variables 𝜇𝜇𝐴𝐴𝑖𝑖 and 𝜇𝜇𝐵𝐵𝑖𝑖 are the logit transformed sensitivity and specificity, respectively, 
for study i. Covariates affecting sensitivity and specificity can be included by replacing the 
means 𝜇𝜇𝐴𝐴 and 𝜇𝜇𝐵𝐵 with linear predictors in the covariates.26 The covariates can be applied 
to one or both measures, and can have common or distinct effects. 

2.1.6. Comparison of methods 
The appropriate choice of methodology for the meta-analysis of diagnostic test accuracy 
studies will depend on numerous factors. The Moses-Littenburg model is considered as 
approximate, as the assumptions of simple linear regression are not met and because of 
the uncertainty around the appropriate weighting.26 As the Moses-Littenberg model is 
essentially a fixed-effect model it does not provide estimates of the between study 
heterogeneity.28 This method can also lead to improper SROC curves.28  

The HSROC and bivariate methods are equivalent under certain parameterisations, such 
as in the absence of covariates or when the same covariates affect both sensitivity and 
specificity (in the bivariate model) and both the accuracy and cut-off point parameters (in 
the HSROC model).26 Therefore in situations where there are no covariates, the two 
models will return equivalent estimates of the expected sensitivity and specificity (and also 
any measures derived from those two measures). 

The HSROC and bivariate approaches are considered to be more statistically rigorous 
than the Moses-Littenberg approach,21;28 although it has been questioned whether this 
necessarily translates into improved estimates of diagnostic test accuracy in all 
situations.29 There is an increasing consensus that the HSROC and bivariate approaches 
offer the best methodologies for pooling diagnostic test accuracy studies, but there are 
differences between the two approaches and the nature of the underlying data may dictate 
which approach is more appropriate.  

A first step is to separately examine the distributions of sensitivity and specificity from the 
included studies.22 If either measure shows a lack of heterogeneity, then it is more 
appropriate to analyse the data using separate univariate meta-analyses to derive point 
estimates and confidence bounds for sensitivity and specificity. However, a full description 
of the included studies can provide contextual information that may justify a full analysis in 
these situations. If only one study is available, then clearly there is no basis for meta-
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analysis. If only two studies are available, then there is insufficient information available to 
reliably estimate all of the parameters in the HSROC and bivariate models. Therefore, in 
the case of two studies, it is not recommended to undertake a meta-analysis and a 
narrative description of the studies should be presented. 

The correlation between sensitivity and specificity is important and is estimated by the 
HSROC and bivariate methods. Ordinarily a positive correlation is expected between TPR 
and FPR. However, data from studies are often noisy and no correlation or a negative 
correlation may be estimated. The confidence bounds of the correlation estimate should 
be assessed. If there is a significant negative correlation, this implies that sensitivity 
improves with increasing specificity, which is unlikely to occur in practice due to the 
relationship between disease status and the test cut-off point (see Figure 2). In the event 
of a negative correlation, the plausibility of this finding should be discussed in relation to 
the nature of the test and the quantity of evidence.  
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Figure 3. Algorithm for the meta-analysis of diagnostic test data (adapted from Chappell et 
al.22) 
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A key consideration is then whether or not a threshold effect is present, which is usually 
evidenced by a positive correlation between the false positive rate and sensitivity. When a 
threshold effect is present, then an SROC approach is appropriate, which can be achieved 
using either the HSROC or bivariate approaches. Estimates of test accuracy can be 
plotted in ROC space. In the absence of a threshold effect, the SROC approach is not 
appropriate.  There will be situations were a threshold effect may or may not be plausible, 
depending on the nature of the test and the indication. For example, some tests explicitly 
depend on converting a measure on a continuous scale into a dichotomous measure of 
disease status (e.g., Prostate-Specific Antigen (PSA) test). These tests are likely to give 
rise to threshold effects. Some tests, on the other hand, may rely on a simple 
presence/absence measure of a biomarker which is directly interpreted as a measure of 
disease status (e.g., rapid strep test), or may employ an unequivocal cut-off point that is 
universally adopted (e.g., Ottawa Ankle rules). Due to differences in how test results are 
interpreted, a threshold effect may arise even when there is a universally employed cut-off 
point. 

If a threshold effect is plausible, and heterogeneity is observed, then it must be evaluated 
if the heterogeneity can be attributed to a threshold effect. Determining whether observed 
heterogeneity is due to a threshold effect is generally based on a visual inspection of the 
distribution of study points in relation to the SROC curve. If study points are in close 
proximity to the SROC, then there will be reasonable confidence that the threshold effect is 
responsible for the heterogeneity. An inspection of the shape of the confidence region is 
also helpful, particularly to check whether the region largely encompasses and follows the 
shape of the SROC curve. If, on the other hand, the prediction region bears little relation to 
the SROC curve, or the study points are not close to the SROC curve, then it is 
reasonable to conclude that factors other than just a threshold effect are responsible for 
the observed heterogeneity. 

The choice of method used must be justified by the context (e.g., the studies, inclusion of 
covariates, correlation between sensitivity and specificity), and the potential impact of the 
assumptions on the interpretation of the results must be clarified. 
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2.2. Presentation of results from a meta-analysis of a single diagnostic test 
Reports of meta-analyses of diagnostic test accuracy must contain the requisite 
information for a reader to know how the analysis was undertaken, what data were used, 
what results were found, and whether or not the findings are reliable. To achieve this, a 
number of presentational features should be included, depending on the type of analysis 
undertaken. 

2.2.1. Tables  
Reports should include a table of all the included studies, and the relevant data from the 
2x2 tables for each of the studies. Such tables can also include the estimated sensitivity 
and specificity and associated confidence bounds for the two measures for each included 
study. 

For the results of the meta-analysis, summary estimates of accuracy and their associated 
confidence bounds should be reported. The main result of the bivariate and the HSROC 
models is the pooled estimate of the summary-paired sensitivity and specificity. At a 
minimum, the results for sensitivity and specificity should be reported, although the DOR 
and likelihood ratios may also be useful. Any other useful outputs from the analysis (e.g., 
the estimated correlation between sensitivity and specificity) should also be reported as 
they may aid interpretation of the data and results. 

The results of any subgroup analyses should also be tabulated. Results of sensitivity 
analyses can also be included in tables, as summary points and confidence bounds 
cannot always be easily read from graphical displays. 

2.2.2. Forest plots for sensitivity and specificity  
Forest plots (also called blobbograms) of sensitivity and specificity are useful for showing 
heterogeneity across studies. These plots give the point estimates and confidence bounds 
for sensitivity and specificity for the individual studies included in the analysis (see Figure 
4). Studies may be ordered by sensitivity or specificity, which can aid interpretation or 
make it more apparent if there is a correlation between the two measures. 

Figure 4. Forest plots of sensitivity and specificity for a sample meta-analysis 
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2.2.3. Confidence and prediction regions for the summary estimate of sensitivity 
and specificity 

From the meta-analysis of diagnostic test accuracy, it is possible to generate 95% 
confidence and prediction regions for sensitivity and specificity. The confidence region 
relates to the summary point estimate based on the included studies whereas the 
prediction region refers to potential values of sensitivity and specificity that might be 
observed in a future study. If the summary values for sensitivity and specificity are to be 
used in a subsequent relative effectiveness assessment simulation model, the prediction 
region may form a more realistic basis for defining parameter uncertainty than the more 
narrowly defined confidence region. Furthermore, prediction regions can also be used for 
the purpose of identifying studies that may be statistical outliers. 

Both the HSROC and bivariate models facilitate the computation of confidence and 
prediction regions around the summary point for sensitivity and specificity, usually in the 
form of a joint confidence ellipse for sensitivity and specificity. 

Figure 5. An example of a summary estimate of sensitivity and false positive rate 

 

2.2.4. Summary ROC curve 
The choice to display an SROC curve depends on whether or not the included studies had 
a common positivity threshold and the subsequent analytical approach. In instances where 
the threshold varies across studies, a summary estimate of sensitivity and specificity is of 
limited use as it represents an average across thresholds. Where the threshold varies, it is 
appropriate to report an SROC curve.  

It must be noted that the SROC curve as specified for the HSROC model is constrained to 
always be positive.25 An SROC curve can also be generated from the results of the 
bivariate model, although a variety of formulations are possible which can lead to quite 
different curves, including those with a negative slope.30 Another drawback of the SROC 
curve is that uncertainty in the SROC curve is not generally calculated as a single common 
SROC curve is assumed. Using a Bayesian approach, it is possible to generate numerous 
SROC curves based on posterior densities which can be used to derive a graphical 
indication of uncertainty in the curve within specified quantiles.22  

Figure 6. An example of a summary receiver operating characteristic (SROC) curve 
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It is suggested that the SROC curve should be restricted to the observed range of 
specificities in the included studies and that the analyst should not extrapolate beyond the 
observed data.25 For example, if the highest upper bound for the false positive rates 
observed in the included studies is 0.60, then the SROC curve should not be extended 
beyond a FPR of 0.60 in the plot. 

2.2.5. Sensitivity analysis 
It is typical in relative effectiveness assessments to consider the influence of various 
factors on results. This is generally achieved through sensitivity analysis – an evaluation of 
how much the conclusions change if the included evidence is changed. In this context, 
sensitivity analysis refers to the quantification of uncertainty rather than an analysis of the 
measure of diagnostic accuracy. Sensitivity analysis may be targeted (e.g., re-analysing 
the data with data at risk of bias excluded) or systematic (for example, univariate 
sensitivity analysis with all uncertain parameters varied one at a time). The same 
principles apply to meta-analysis. 

In any meta-analysis there is likely to be heterogeneity across the included studies. There 
can be many reasons for that heterogeneity, including systematic differences between the 
studies in terms of the patients, how the test was applied, and the choice of reference 
standard. Study quality can also be variable and the application of a formal risk of bias 
measure can be used to identify specific studies at high risk of bias. A targeted sensitivity 
analysis may involve excluding studies that are considered outliers in a statistical sense, or 
that have been evaluated as being at high risk of bias. Alternatively, the meta-analysis 
may be restricted to a sub-group of studies with a common characteristic, although this 
can also be achieved by a meta-regression approach, which is possible with both the 
HSROC and bivariate methods. By extension, a systematic sensitivity analysis may be 
based around repeating the meta-analysis with each of the studies excluded in turn. Study 
influence can be measured using metrics such as Cook’s distance, while statistical outliers 
may be identified using standardised study-level residuals.31 In both cases, these metrics 
can be applied to sensitivity and specificity simultaneously. 

If the results remain relatively unchanged then there can be confidence that the summary 
estimates are accurate. If, however, the results are sensitive to the included data, then 
greater attention needs to be paid to the included studies and what characteristics are 
impacting on differences. Evidence for a relative effectiveness assessment must be 
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relevant to the target population and conditions under which the diagnostic test will be 
used in practice. 

 

2.3. Comparison of two diagnostic tests with respect to diagnostic accuracy 
(incorporate non-comparative studies in discussion of heterogeneity) 

Estimating diagnostic test accuracy is often for the purpose of comparing two or more tests 
for the same indication. In this situation, the diagnostic accuracy of all tests has to be 
compared.32 However, the evidence derived from comparative and non-comparative 
studies often differs. Ideally, for the purposes of comparing two diagnostic tests, robustly 
designed studies in which all patients receive all tests or are randomly assigned to receive 
one or other of the tests are preferred as evidence to guide test selection.33 Irrespective of 
the comparison, the same reference standard test should be used for all patients. The use 
of data from non-comparative studies increases the chances of differences in the patient 
populations, different reference standard tests, and different interpretation of test results. 

2.4. Sources of bias 
Evidence has shown that diagnostic studies with methodological shortcomings may 
overestimate the accuracy of a diagnostic test, particularly those including non-
representative patients or applying different reference standards.34 As with the meta-
analysis of interventions, the pooling of data across diagnostic test accuracy studies may 
be subject to numerous sources of bias, although some forms of bias are specific to 
diagnostic test studies.23 In this section we outline some of the main sources of bias that 
can occur. In many cases, there is little that can be done to correct for bias beyond a 
forensic examination of the included studies, careful documentation of potential bias, and a 
full sensitivity analysis to examine the potential impact on results of including studies at 
risk of bias. 

2.4.1. Data gathering and publication bias 
As with the meta-analysis of any clinical intervention, meta-analysis of diagnostic test 
accuracy studies should be undertaken as part of a systematic review. Methods for 
systematic review are well described elsewhere,19 with specific guidance available for 
diagnostic test accuracy studies.35 The identification of diagnostic test accuracy studies 
can pose particular difficulties, due in part to the lack of consistent terminology or use of 
MESH terms, indeed, in some cases methodological filters can reduce the ability to find 
relevant studies.36;37 Best practice is to search on the basis of the index test and target 
condition.37 Difficulties can also arise where a single study publishes multiple articles using 
the same or overlapping cohorts; care must be taken not to include data on the same 
patients from several articles, which can be referred to as double data reporting bias.  

Publication bias is believed to arise due to studies with poor test performance results not 
getting published, leading to exaggerated estimates of test performance in a systematic 
review.38 As with meta-analyses of clinical interventions, asymmetry in the funnel plot 
(constructed using the DOR) is often taken as an indication that there may be publication 
bias, although there may be many other factors causing asymmetry (e.g., variations in test 
procedures, patients, or reference standards).39 It is possible that publication bias may be 
more prevalent in studies of test accuracy than in studies of clinical effectiveness.39 There 
are a number of approaches available for estimating funnel plot asymmetry, each of which 
may give different results in a given context. The unique features of the test accuracy 
study make the application of the Begg, Egger, and Macaskill tests of funnel plot 
asymmetry potentially misleading for typical DOR values.40 Alternative funnel plots using 
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the natural logarithm DOR and functions of the effective sample size may be useful for 
evaluating publication bias. 40 The power of any of these statistical tests for funnel plot 
asymmetry decreases with increasing heterogeneity of DOR. Other factors may also be 
associated with sample size and hence may impact on the results of publication bias tests. 
Furthermore, where the number of included studies is small, the statistical methods 
available may be underpowered to detect asymmetry. As such, funnel plot asymmetry 
should be used but interpreted with caution.38  

2.4.2. Heterogeneity in meta-analyses of sensitivity and specificity 
Between-study heterogeneity refers to differences in variability in the results of studies. 
Clinical, methodological, and statistical heterogeneity are distinct concepts. Clinical 
heterogeneity refers to variability across studies in terms of participants, the intervention, 
and outcomes. These are legitimate differences that arise because the studies are not 
comparing like with like. Methodological heterogeneity is a function of variability in study 
design and risk of bias. Differences in methodology may include differences in the 
technical specifications of the test, such as the protocols for how the test is applied. This 
may also be referred to as technical heterogeneity. Statistical heterogeneity arises when 
there is greater variability in outcomes than would be expected by chance, and usually 
invokes a violation of underlying assumptions. For the purposes of this guideline, the 
outcome measure of interest is diagnostic test accuracy. Clinical and methodological 
heterogeneity will often, but not necessarily give rise to statistical heterogeneity. 

The obvious source of statistical heterogeneity in sensitivity and specificity is due to 
threshold differences for test positivity.41 If the observed between-study heterogeneity is 
entirely due to variation in the diagnostic threshold, estimates of summary sensitivity and 
specificity will underestimate diagnostic performance.3 In these situations the appropriate 
meta-analytical summary is the receiver operating characteristic curve rather than a single 
summary point.  However, it must be clear that there are no other substantial sources of 
heterogeneity. Where there are a variety of sources of heterogeneity, including threshold 
effects, the HSROC or bivariate method should be used with random effects. Presentation 
of an SROC may not be informative unless some attempt to measure uncertainty in the 
curve is included. 

Another potentially important source of heterogeneity is due to observer variability. Within-
study observer variability can be of the same order of magnitude as variability across 
studies.42 By including studies from a wide time horizon, it is also possible that changes in 
how a diagnostic test is used in practice may have occurred, giving rise to heterogeneity.42  

Although measures of heterogeneity exist for univariate meta-analyses (e.g., I2, τ2), there 
is no analogue for bivariate meta-analyses. The amount of observed heterogeneity is 
quantified by the random effects terms in the models, but these are not easily 
interpreted.28 The distribution of study points on a plot of true versus false positive rates 
relative to the estimated SROC can give an indication of whether there is heterogeneity 
due to variation in the test threshold. The distribution of points relative to the prediction 
ellipse can also provide an indication of whether or not there is heterogeneity.28  

A common approach to exploring heterogeneity is to use meta-regression whereby study-
level covariates are included when estimating summary statistics. Both the HSROC and 
bivariate models facilitate the use of study-level covariates as either categorical (e.g., 
study design) or continuous (e.g., average patient characteristics).28 In the bivariate model, 
covariates can be incorporated to affect summary sensitivity or summary specificity, or 
both measures. The HSROC model, on the other hand, allows covariates to be added to 
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affect the test positivity, position of the curve, and shape of the curve. A covariate may be 
associated with some, but not all three model parameters.28  

 

2.4.3. Spectrum bias 
As test performance often varies across population subgroups, diagnostic tests should be 
evaluated in a clinically relevant population. The performance of the test may vary 
depending on the mix of patients, most particularly due to differences in disease severity. 
Inappropriate use of patient populations can occur, introducing a form of heterogeneity 
referred to as spectrum bias.43 When there is spectrum bias the diagnostic test 
performance varies across patient subgroups and a study of that test’s performance does 
not adequately represent all subgroups. The impact of spectrum bias on the estimated test 
accuracy will depend on the difference between included patients and the actual target 
population. 

 

2.4.4. Verification/work-up bias and variable gold standard 
Verification bias (also called selection or workup bias), occurs when not all recipients of 
the index test also receive the reference or gold-standard test.44 This will often occur 
where a primary study uses a two stage design, where all patients receive the index test in 
the first stage, but only a subsample receives the reference test in the second stage. The 
reference test is required to verify if the tested individuals did or did not have the target 
indication. When selection of subjects for the reference standard is not completely random, 
verification bias will occur.44 When verification bias is present, it will often lead to an 
overestimate of the sensitivity of the index test.23 To prevent misleading comparisons, 
estimates from a trial with a series or multi-stage design must always be described in the 
context of the trial design and study population.45  

2.4.5. Bias resulting from choice of cut-off points 
A data-driven approach to the selection of the optimal cut-off values can result in overly 
optimistic estimates of sensitivity and specificity, particularly in small studies.46 Using 
simulation, it has been shown that data-driven cut-off points frequently exaggerate test 
performance, and that this bias probably affects many published diagnostic validity 
studies.47 Bias can be reduced by optimising cut-off points using a training dataset and 
then applying those cut-off points to a second test set of data. However, such an approach 
is reliant on sufficient data availability, which is frequently problematic when considering 
diagnostic test accuracy studies. Pre-specified cut-off points improve the validity of 
diagnostic test research, and this is particularly the case for studies with small samples. 
Alternative methods can be used to reduce this bias, but finding robust estimates for cut-
off values and accuracy requires considerable sample sizes.46  

 

2.4.6. Disease prevalence 
Although contrary to typical assumptions, the sensitivity and specificity of a diagnostic test 
can vary with disease prevalence.48 This effect is likely to be the result of a number of 
mechanisms, including patient spectrum, which affect prevalence, sensitivity and 
specificity. Trivariate generalised linear mixed models have been applied to jointly model 
prevalence, sensitivity and specificity, enabling the assessment of correlations between 
the three parameters.49;50
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2.4.7. Potential for dependence in combined tests 
For the purpose of this guideline, it is presumed that combined tests are not repeated 
applications of the same test, as might happen in a screening programme, but rather the 
use of a variety of tests with the aim of increasing the overall diagnostic accuracy. 

When investigating combined tests, or tests carried out in sequence, the correlation 
between test results is important. Two perfectly correlated tests will return the same 
results, and hence the second test does not add any information from a diagnostic point of 
view. This is important for the clinician: if two correlated tests are treated as independent, 
then the post-test probability of disease will be over-estimated by two positive tests.51 
From a meta-analytic point of view, combined tests can give rise to a number of problems, 
not least a multiplication of the issues for single diagnostic tests. 

Where multiple tests are used for diagnosis, it is highly likely that the tests will not perform 
independently.52 That is, in the case of two tests, the performance of the second test may 
depend on the results of the first test. When the assumption of dependence between tests 
is ignored, this can lead to erroneous disease probability estimates.52  

A further issue is that patients testing positive may be removed from the tested population 
to receive treatment. This change to the population may affect the disease prevalence and 
may also introduce spectrum bias. 

2.4.8. Missing data/non-evaluable results 
Reports of diagnostic test accuracy studies will sometimes refer to missing data or non-
evaluable results. This may be done explicitly in the text or it may be apparent from the 
2x2 tables where the numbers of tests are inconsistent. A potential for bias exists if the 
number of patients enrolled differs from the number of patients included in the 2x2 table of 
results, as patients lost to follow-up differ systematically from the remaining patients.53 
Missing data can occur for a variety of legitimate reasons. For example, if a patient is to 
receive two different tests and is clearly positive after the first, it may be unethical to 
subject them to the second test if it causes a delay in treatment. Non-evaluable results can 
occur where the results, of what is intended to be a dichotomous measure, cannot be 
unequivocally classified. The exclusion of non evaluable results leads to the 
overestimation of diagnostic accuracy.54 One potential solution is to adopt an intention-to-
diagnose approach, which can be formulated as a 3x2 table in which non-evaluable results 
are included.54 Such an analysis can significantly decrease the estimate of diagnostic 
performance. 

2.4.9. Individual patient data analysis 
Individual patient data meta-analysis enables the evaluation of diagnostic test accuracy in 
relation to other relevant information.55 This approach could increase the efficiency of the 
diagnostic work-up by, for example, reducing the need for invasive confirmatory 
tests.13;55;56 The addition of clinical information when interpreting the results of diagnostic 
tests can also improve accuracy;58 if this has been applied to some, but not all patients in a 
study, it could be recorded as a covariate and used in an individual patient analysis. 
Allowing for individual patient characteristics can also allow for proper accounting of 
differences in the patient spectrum, and enable test results to be interpreted based on 
additional patient information.26 

2.5. Meta-analysis of the prognostic utility of a diagnostic test  
A prognostic factor is typically a biomarker that is used to predict future events, such as 
disease progression or mortality. Studies of prognostic factors aim to estimate the 
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relationship between the prognostic factor and an outcome. In some instances, prognosis 
is based on a measure such as a relative risk or hazard ratio, in which case the meta-
analytic approach would be a univariate analysis. Where studies present prognostic 
information as a 2x2 table then methods used for diagnostic test accuracy studies may be 
appropriate. 

As they are similar to diagnostic tests in a number of regards, the meta-analysis of 
prognostic factors face similar issues to those of diagnostic tests. Systematic reviews of 
prognostic factors are often affected by the difficulty in comprehensively identifying 
relevant studies. More so than diagnostic test accuracy studies, there is a relatively high 
risk of publication bias.59 There is also a likelihood that many prognostic factors may be 
evaluated in a single study, but only those that show a high predictive value are reported. 
The selective reporting can mean that although the same prognostic factor may have been 
evaluated in numerous studies, it may be selectively reported giving a biased impression 
of its predictive power. Equally, although the relevant biomarker may be consistently used, 
the method of measurement may vary substantially. 

Data extraction from identified studies can also be problematic because different methods 
of presentation may have been used. The prognostic measure, and often the outcome, are 
frequently measured on a continuous scale (e.g., tumour size) and may be recorded as 
longitudinal data. The manner in which these data are handled and presented can vary 
substantially. Results may be adjusted for relevant covariates, including other prognostic 
variables. Different studies will vary because of different choices of covariates (if any) and 
different methods of adjustment. 

One solution is to use individual patient data (IPD), as this facilitates incorporation of 
detailed data specific to the individual patients. Grouped data can lose the associations 
between different prognostic measures that may be very important. 

2.6. Assessing the quality of studies and meta-analysis 
An important component of any systematic review or meta-analysis is a formal 
assessment of study quality, and the detailed reporting of methodology and findings. A 
number of initiatives have taken place with a view to improving the quality of published 
studies for both diagnostic accuracy studies and subsequent meta-analyses. 

2.6.1. STARD 
The Standards for Reporting of Diagnostic Accuracy (STARD) initiative was started with a 
view to improving the accuracy and completeness of reporting of studies of diagnostic 
accuracy.60 In doing so, it was hoped that readers would be able to assess the potential for 
bias in a study, and to evaluate a study's generalisability. The STARD checklist was 
published in a number of journals and adopted by some as a requirement for submitting 
diagnostic test accuracy studies. However, the impact of the initiative on the quality of 
reporting has been questioned.61;62 While the STARD initiative applies to the reporting of 
primary research, poor reporting can be indicative of poor study quality. 

2.6.2. QUADAS 
The Quality Assessment of Diagnostic Accuracy Studies (QUADAS) tool was originally 
developed in 2003 and subsequently refined and updated in 2011 as QUADAS-2.53 The 
tool assesses study quality in four domains: patient selection, index test, reference 
standard, and flow and timing. Each domain is assessed in terms of risk of bias, and 
concerns regarding applicability (for the first three domains). Signalling questions are used 
to assist judgement regarding risk of bias. Application of the tool results in a judgement of 
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risk of bias for each study categorised as low, high, or unclear. These judgements can be 
used to exclude studies from the primary analysis or to guide sensitivity analyses. 
Although it is the only validated tool for assessing the quality of diagnostic test accuracy 
studies, it should be noted that QUADAS-2 does not include specific criteria for assessing 
comparative studies, although it is possible to adapt the tool for this purpose.63  

2.6.3. PRISMA 
Having identified relevant studies for a meta-analysis, assessed their risk of bias and 
undertaken evidence synthesis through meta-analysis, the results must then be reported. 
The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 
statement outlines an evidence-based minimum set of items for reporting in systematic 
reviews and meta-analyses.64 The PRISMA checklist was designed for systematic reviews 
and meta-analyses in general, and the authors acknowledged that the checklist may need 
to be modified when the research question related to diagnostic or prognostic 
interventions. One of the key principles underpinning the PRISMA statement is that 
authors ensure that their methods are reported with sufficient clarity and transparency so 
that readers can critically judge the presented evidence and replicate the research. An 
analysis of the impact of PRISMA on the reporting of meta-analyses in diagnostic research 
has suggested that there are still issues in the quality of reporting such studies.65 However, 
a modified version of PRISMA for the reporting of diagnostic test accuracy meta-analyses 
provides the best prospect of achieving good quality reporting. 

2.6.4. GRADE 
The Grading of Recommendations Applicability, Development and Evaluation (GRADE) 
approach provides a framework for considering the quality of evidence regarding 
interventions, and can be applied to diagnostic tests in terms of their impact on patient-
relevant outcomes.66 GRADE is often used in the context of developing clinical guidelines 
and recommendations regarding the appropriate use of a technology or health 
intervention. 

2.7. Software 
A variety of software packages have been used in the literature for carrying out the meta-
analysis techniques described in these guidelines. In terms of the bivariate and HSROC 
approaches, implementations have been documented for the proprietary programmes 
SAS® and Stata®. Coded implementations in SAS® have been published in a number of 
studies, while the metandi module for Stata® computes results for both methods (without 
covariates). MLwiN is a package created by the University of Bristol for fitting multilevel 
models and can be applied to both techniques. The techniques can also be applied 
through free software packages R and WinBUGS. The latter programme is for analyses in 
a Bayesian framework and code for both methods has been published. Functions for the 
bivariate and HSROC methods in R are provided through a number of freely available 
packages. It should be noted that a variety of implementations are available in R with 
different default parameterisations, so users should pay careful attention to what 
methodology is coded into each function. 

In all cases, it is critical that the user understands how the method has been implemented 
and what parameters can be set and what outputs are provided. Correct interpretation of 
the output is contingent on understanding how the computations have been carried out 
and whether the underlying assumptions are correct. Other than reporting convergence, 
most packages will give limited information on whether the pooled estimates and 
parameter values are valid. Application of the HSROC model can be associated with 
convergence problems when the sample sizes are small or there is too much 
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heterogeneity. It is important to examine the validity of the model and the software used 
should support such investigation. 

 

Table 1. Software implementations of methods for the meta-analysis of diagnostic test 
accuracy studies 

Software 
Meta-analysis method 

Moses-
Littenburg 

Hierarchical 
SROC 

Bivariate random 
effects 

RevMan*    

Meta-DiSc*    

SPSS®    

SAS®    

Stata®    

MLwiN+    

R*    

WinBUGS/OpenBUGS*    

Notes: * Free software; + free to UK academics. 

 

Of the software packages listed in Table 1, some (RevMan, metaDisc, R, Stata®) contain 
specific commands with implemented versions of meta-analysis methods, while some 
(SAS®, SPSS®, Stata®, R) allow for the computation of the corresponding algorithms. 
The latter may allow for greater flexibility in how the algorithms are applied. 
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3. Conclusion and main recommendations 
 

The meta-analysis of diagnostic test accuracy studies can be used to generate a more 
precise estimate by pooling data from a number of studies. Diagnostic test accuracy is not 
a measure of clinical effectiveness and improved accuracy does not necessarily imply 
improved patient outcomes. There are a variety of metrics available for describing 
diagnostic test accuracy, although the measures most commonly summarised in a meta-
analysis are sensitivity and specificity (or the corresponding true positive rate and false 
positive rate). Due to the likelihood of a negative correlation between sensitivity and 
specificity, a meta-analysis of the two measures should take this relationship into account. 
While a number of methodological approaches are available for the meta-analysis of 
diagnostic test accuracy studies, the HSROC and bivariate methods are the most 
appropriate. These techniques have been implemented in a variety of software 
environments. There are numerous forms of bias that can affect estimates of diagnostic 
test accuracy in individual studies. All studies included in a meta-analysis should be 
carefully scrutinised to ensure they are equivalent and suitable for meta-analysis. 
Sensitivity analysis is a useful approach for testing the influence of studies with a high risk 
of bias. 

Based on the preceding sections, a number of recommendations are proposed: 

1. Pooling studies of diagnostic test accuracy should only be undertaken when there 
are sufficient studies available. When only two studies are available, it is not 
recommended to undertake a meta-analysis: reporting should be restricted to a 
narrative description of the available evidence. 

2. The quality of studies being pooled should be assessed using a recognised and 
validated quality assessment tool. 

3. Pooled studies should be equivalent in terms of the index test, the reference 
standard, the patient population and the indication. 

4. Where important differences are identified across studies in terms of disease 
spectrum, study setting, and disease prevalence, these should be accounted for by 
including covariates. 

5. Where potential study differences occur but cannot be readily accounted for, such 
as verification bias, these should be clearly identified and the potential impacts 
determined. 

6. The appropriate methods of meta-analysis are the hierarchical SROC and bivariate 
random effects techniques, unless there is an absence of heterogeneity in either 
FPR or TPR, in which case two separate univariate meta-analyses may be more 
appropriate. 

7. The appropriate approach to meta-analysis is defined with respect to the quantity of 
data, between-study heterogeneity, threshold effects, and the correlation between 
TPR and FPR. 

8. The reporting of meta-analysis should include all the information that justifies the 
choice of analytical approach and supports the exclusion of alternative approaches. 
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Recommendations for those undertaking meta-analyses 

For researchers undertaking a meta-analysis of diagnostic test accuracy studies, a 
minimum set of information must be reported, specifically: 

1. A detailed description of the included studies in terms of both similarities and 
differences in key components (e.g., index test, reference test, population, 
indication, test threshold, prevalence). 

2. The quality assessment of the included studies. 
3. A clear description of the decision process that leads to the selection of the 

appropriate methodology. 
4. All of the estimated parameter values along with their corresponding confidence or 

credibility intervals. 
5. Appropriate graphical outputs including forest plots, SROC (if computed), and 

prediction regions. 
6. The possible impact of different forms of bias on the results. 

 

Recommendations for those reading meta-analyses 

For those reading a meta-analysis of diagnostic test accuracy studies, certain key 
information must be included in order to appraise the findings: 

1. Were the included studies comparable in terms of the key features (e.g., index test, 
reference test, population, indication, test threshold, prevalence)? 

2. Were the included studies of acceptable quality? 
3. Was the methodology used appropriate given the nature of the included evidence? 
4. Were all of the estimated parameter values clearly reported and their values 

interpreted? 
5. Were the relevant graphical outputs provided including forest plots, SROC (if 

computed), and prediction regions? 
6. Were the possible effects of different forms of bias on the results clearly reported 

and supported with relevant sensitivity analyses? 
7. Were the conclusions drawn consistent with the evidence analysed? 

 



EUnetHTA JA2 Guideline ”Meta-analysis of diagnostic test accuracy studies” WP 7 

 
NOV 2014 © EUnetHTA, 2015. Reproduction is authorised provided EUnetHTA is explicitly acknowledged   37  

  

Annexe 1. Bibliography 
 

 (1)  Knottnerus JA, van Weel C. General introduction: evaluation of diagnostic 
procedures. In: Knottnerus JA, editor. The evidence base of clinical diagnosis. 
London: BMJ Books; 2002. 81-94. 

 (2)  Ebell MH. Evidence-based diagnosis. New York: Springer-Verlag; 2001. 
 (3)  Deeks JJ. Systematic reviews in health care: Systematic reviews of evaluations of 

diagnostic and screening tests. BMJ 2001; 323(7305):157-162. 
 (4)  Pewsner D, Battaglia M, Minder C, Marx A, Bucher, einer C. et al. Ruling a 

diagnosis in or out with "SpPIn" and "SnNOut": a note of caution. BMJ 2004; 329. 
 (5)  Smits N. A note on Youden's J and its cost ratio. BMC Med Res Methodol 2010; 

10(1):89. 
 (6)  Chen L, Reisner AT, Chen X, Gribok A, Reifman J. Are standard diagnostic test 

characteristics sufficient for the assessment of continual patient monitoring? Med 
Decis Making 2013; 33(2):225-234. 

 (7)  Deeks JJ. Systematic reviews of evaluations of diagnostic and screening tests. In: 
Egger M, Davey Smith G, Altman DG, editors. Systematic Reviews in Health Care. 
London: BMJ Books; 2001. 248-284. 

 (8)  Altman DG, Bland JM. Diagnostic tests 2: Predictive values. BMJ 1994; 
309(6947):102. 

 (9)  Eusebi P. Diagnostic accuracy measures. Cerebrovasc Dis 2013; 36:267-272. 
 (10)  Ferrante di Ruffano L, Hyde CJ, McCaffery KJ, Bossuyt PM, Deeks JJ. Assessing 

the value of diagnostic tests: a framework for designing and evaluating trials. BMJ 
2012; 344:e686. 

 (11)  Knottnerus JA, Dinant G-J, van Schayck OP. The diagnostic before-after study to 
assess clinical impact. In: Knottnerus JA, editor. The evidence base of clinical 
diagnosis. London: BMJ Books; 2002. 81-94. 

 (12)  Staub LP, Dyer S, Lord SJ, Simes RJ. Linking the evidence: intermediate outcomes 
in medical test assessments. Int J Technol Assess Health Care 2012; 28(1):52-58. 

 (13)  Broeze KA, Opmeer BC, van d, V, Bossuyt PM, Bhattacharya S, Mol BW. Individual 
patient data meta-analysis: a promising approach for evidence synthesis in 
reproductive medicine. Hum Reprod Update 2010; 16(6):561-567. 

 (14)  Merlin T, Lehman S, Hiller JE, Ryan P. The "linked evidence approach" to assess 
medical tests: a critical analysis. Int J Technol Assess Health Care 2013; 29(3):343-
350. 

 (15)  Lord SJ, Irwig L, Simes RJ. When is measuring sensitivity and specificity sufficient 
to evaluate a diagnostic test, and when do we need randomized trials? Ann Intern 
Med 2006; 144(11):850-855. 

 (16)  Jarvik JG. Fundamentals of Clinical Research for Radiologists: The Research 
Framework. Am J Roentgenol 2001; 176(4):873-878. 

 (17)  Krupinski EA, Jiang Y. Anniversary paper: evaluation of medical imaging systems. 
Med Phys 2008; 35(2):645-659. 

 (18)  Thornbury JR. Eugene W. Caldwell Lecture. Clinical efficacy of diagnostic imaging: 
love it or leave it. AJR Am J Roentgenol 1994; 162(1):1-8. 

 (19)  Cochrane Handbook for Systematic Reviews of Interventions. Version 5.1.0 ed. The 
Cochrane Collaboration; 2011. 

 (20)  Centre for Reviews and Dissemination. CRD’s Guidance for Undertaking 
Systematic Reviews. CRD; 2009. 
(https://www.york.ac.uk/inst/crd/SysRev/!SSL!/WebHelp/SysRev3.htm) 



EUnetHTA JA2 Guideline ”Meta-analysis of diagnostic test accuracy studies” WP 7 

 
NOV 2014 © EUnetHTA, 2015. Reproduction is authorised provided EUnetHTA is explicitly acknowledged   38  

  

 (21)  Harbord RM, Whiting P, Sterne JAC, Egger M, Deeks JJ, Shang A et al. An 
empirical comparison of methods for meta-analysis of diagnostic accuracy showed 
hierarchical models are necessary. Journal of Clinical Epidemiology 2008; 
61(11):1095-1103. 

 (22)  Chappell FM, Raab GM, Wardlaw JM. When are summary ROC curves appropriate 
for diagnostic meta-analyses? Stat Med 2009; 28(21):2653-2668. 

 (23)  Leeflang MM, Deeks JJ, Gatsonis C, Bossuyt PM. Systematic reviews of diagnostic 
test accuracy. Ann Intern Med 2008; 149(12):889-897. 

 (24)  Reitsma JB, Glas AS, Rutjes AWS, Scholten RJPM, Bossuyt PM, Zwinderman AH. 
Bivariate analysis of sensitivity and specificity produces informative summary 
measures in diagnostic reviews. Journal of Clinical Epidemiology 2005; 58(10):982-
990. 

 (25)  Rutter CM, Gatsonis CA. A hierarchical regression approach to meta-analysis of 
diagnostic test accuracy evaluations. Stat Med 2001; 20(19):2865-2884. 

 (26)  Harbord RM, Deeks JJ, Egger M, Whiting P, Sterne JAC. A unification of models for 
meta-analysis of diagnostic accuracy studies. Biostatistics 2007; 8(2):239-251. 

 (27)  Menke J. Bivariate random-effects meta-analysis of sensitivity and specificity with 
SAS PROC GLIMMIX. Methods Inf Med 2010; 49(1):54-64. 

 (28)  Macaskill P, Gatsonis CA, Deeks JJ, Harbord R, Takwoingi Y. Chapter 10: 
Analysing and presenting results. In: Deeks JJ, Bossuyt PM, Gatsonis C, editors. 
Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy Version 
1.0. The Cochrane Collaboration; 2010. 

 (29)  Begg CB. Meta-analysis methods for diagnostic accuracy. Journal of Clinical 
Epidemiology 2008; 61(11):1081-1082. 

 (30)  Dahabreh IJ, Trikalinos TA, Lau J, Schmid C. An Empirical Assessment of Bivariate 
Methods for Meta-Analysis of Test Accuracy. No. 12(13)-EHC136-EF. 2012. 
Rockville, Maryland, Agency for Healthcare Research and Quality.  

 (31)  Harbord RM, Whiting P. metandi: Meta-analysis of diagnostic accuracy using 
hierarchical logistic regression. In: Sterne JAC, Newton HJ, Cox NJ, editors. Meta-
Analysis in Stata. Texas: Stata Press; 2009. 181-199. 

 (32)  Bossuyt PM, Irwig L, Craig J, Glasziou P. Comparative accuracy: assessing new 
tests against existing diagnostic pathways. BMJ 2006; 332(7549):1089-1092. 

 (33)  Takwoingi Y, Leeflang MMG, Deeks JJ. Empirical evidence of the importance of 
comparative studies of diagnostic test accuracy. Ann Intern Med 2013; 158(7):544-
554. 

 (34)  Lijmer JG, Mol BW, Heisterkamp S, Bonsel GJ, Prins MH, van der Meulen JH et al. 
Empirical evidence of design-related bias in studies of diagnostic tests. JAMA 1999; 
282(11):1061-1066. 

 (35)  de Vet HCW, Eisinga A, Riphagen II, Aertgeerts B, Pewsner D. Chapter 7: 
Searching for Studies. Cochrane Handbook for Systematic Reviews of Diagnostic 
Test Accuracy. Version 0.4 ed. The Cochrane Collaboration; 2008. 

 (36)  Doust JA, Pietrzak E, Sanders S, Glasziou PP. Identifying studies for systematic 
reviews of diagnostic tests was difficult due to the poor sensitivity and precision of 
methodologic filters and the lack of information in the abstract. J Clin Epidemiol 
2005; 58(5):444-449. 

 (37)  Whiting P, Westwood M, Beynon R, Burke M, Sterne JA, Glanville J. Inclusion of 
methodological filters in searches for diagnostic test accuracy studies misses 
relevant studies. J Clin Epidemiol 2011; 64(6):602-607. 

 (38)  Tatsioni A, Zarin DA, Aronson N, Samson DJ, Flamm CR, Schmid C et al. 
Challenges in systematic reviews of diagnostic technologies. Ann Intern Med 2005; 
142(12 Pt 2):1048-1055. 



EUnetHTA JA2 Guideline ”Meta-analysis of diagnostic test accuracy studies” WP 7 

 
NOV 2014 © EUnetHTA, 2015. Reproduction is authorised provided EUnetHTA is explicitly acknowledged   39  

  

 (39)  Song F, Khan KS, Dinnes J, Sutton AJ. Asymmetric funnel plots and publication 
bias in meta-analyses of diagnostic accuracy. Int J Epidemiol 2002; 31(1):88-95. 

 (40)  Deeks JJ, Macaskill P, Irwig L. The performance of tests of publication bias and 
other sample size effects in systematic reviews of diagnostic test accuracy was 
assessed. Journal of Clinical Epidemiology 2005; 58(9):882-893. 

 (41)  Leeflang MMG, Deeks JJ, Rutjes AWS, Reitsma JB, Bossuyt PMM. Bivariate meta-
analysis of predictive values of diagnostic tests can be an alternative to bivariate 
meta-analysis of sensitivity and specificity. Journal of Clinical Epidemiology 2012; 
65(10):1088-1097. 

 (42)  Gatsonis C, Paliwal P. Meta-analysis of diagnostic and screening test accuracy 
evaluations: Methodologic primer. Am J Roentgenol 2006; 187(2):271-281. 

 (43)  Mulherin SA, Miller WC. Spectrum bias or spectrum effect? Subgroup variation in 
diagnostic test evaluation. Ann Intern Med 2002; 137(7):598-602. 

 (44)  de Groot JA, Dendukuri N, Janssen KJ, Reitsma JB, Brophy J, Joseph L et al. 
Adjusting for partial verification or workup bias in meta-analyses of diagnostic 
accuracy studies. Am J Epidemiol 2012; 175(8):847-853. 

 (45)  Ringham BM, Alonzo TA, Grunwald GK, Glueck DH. Estimates of sensitivity and 
specificity can be biased when reporting the results of the second test in a 
screening trial conducted in series. BMC Med Res Methodol 2010; 10:3. 

 (46)  Leeflang MMG, Moons KGM, Reitsma JB, Zwinderman AH. Bias in Sensitivity and 
Specificity Caused by Data-Driven Selection of Optimal Cutoff Values: Mechanisms, 
Magnitude, and Solutions. Clinical Chemistry 2008; 54(4):729-737. 

 (47)  Ewald B. Post hoc choice of cut points introduced bias to diagnostic research. 
Journal of Clinical Epidemiology 2006; 59(8):798-801. 

 (48)  Leeflang MM, Rutjes AW, Reitsma JB, Hooft L, Bossuyt PM. Variation of a test's 
sensitivity and specificity with disease prevalence. CMAJ 2013. 

 (49)  Kuss O, Hoyer A, Solms A. Meta-analysis for diagnostic accuracy studies: a new 
statistical model using beta-binomial distributions and bivariate copulas. Stat Med 
2014; 33(1):17-30. 

 (50)  Ma X, Nie L, Cole SR, Chu H. Statistical methods for multivariate meta-analysis of 
diagnostic tests: An overview and tutorial. Stat Methods Med Res 2013. 

 (51)  van Walraven C, Austin PC, Jennings A, Forster AJ. Correlation between serial 
tests made disease probability estimates erroneous. Journal of Clinical 
Epidemiology 2009; 62(12):1301-1305. 

 (52)  Novielli N, Cooper NJ, Sutton AJ. Evaluating the Cost-Effectiveness of Diagnostic 
Tests in Combination: Is It Important to Allow for Performance Dependency? Value 
in Health 2013; 16(4):536-541. 

 (53)  Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB et al. 
QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy 
studies. Ann Intern Med 2011; 155(8):529-536. 

 (54)  Schuetz GM, Schlattmann P, Dewey M. Use of 3x2 tables with an intention to 
diagnose approach to assess clinical performance of diagnostic tests: meta-
analytical evaluation of coronary CT angiography studies. BMJ 2012; 345:e6717. 

 (55)  Khan KS, Bachmann LM, ter Riet G. Systematic reviews with individual patient data 
meta-analysis to evaluate diagnostic tests. European Journal of Obstetrics & 
Gynecology and Reproductive Biology 2003; 108(2):121-125. 

 (56)  Broeze KA, Opmeer BC, Coppus SFPJ, Van Geloven N, Alves MFC, Ã…nestad G 
et al. Chlamydia antibody testing and diagnosing tubal pathology in subfertile 
women: an individual patient data meta-analysis. Hum Reprod Update 2011; 
17(3):301-310. 

 (57)  Broeze KA, Opmeer BC, Coppus SF, Van Geloven N, Den Hartog JE, Land JA et 
al. Integration of patient characteristics and the results of Chlamydia antibody 



EUnetHTA JA2 Guideline ”Meta-analysis of diagnostic test accuracy studies” WP 7 

 
NOV 2014 © EUnetHTA, 2015. Reproduction is authorised provided EUnetHTA is explicitly acknowledged   40  

  

testing and hysterosalpingography in the diagnosis of tubal pathology: an individual 
patient data meta-analysis. Human Reproduction 2012; 27(10):2979-2990. 

 (58)  Loy CT, Irwig L. Accuracy of diagnostic tests read with and without clinical 
information: a systematic review. JAMA 2004; 292(13):1602-1609. 

 (59)  Altman DG. Systematic reviews of evaluations of prognostic variables. In: Egger M, 
Davey Smith G, Altman DG, editors. Systematic Reviews in Health Care. London: 
BMJ Books; 2001. 228-247. 

 (60)  Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig LM et al. 
Towards complete and accurate reporting of studies of diagnostic accuracy: the 
STARD initiative. BMJ 2003; 326(7379):41-44. 

 (61)  Smidt N, Rutjes AW, van der Windt DA, Ostelo RW, Bossuyt PM, Reitsma JB et al. 
The quality of diagnostic accuracy studies since the STARD statement: has it 
improved? Neurology 2006; 67(5):792-797. 

 (62)  Wilczynski NL. Quality of reporting of diagnostic accuracy studies: no change since 
STARD statement publication--before-and-after study. Radiology 2008; 248(3):817-
823. 

 (63)  Wade R, Corbett M, Eastwood A. Quality assessment of comparative diagnostic 
accuracy studies: our experience using a modified version of the QUADAS-2 tool. 
Res Syn Meth 2013; 4(3):280-286. 

 (64)  Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP et al. The 
PRISMA statement for reporting systematic reviews and meta-analyses of studies 
that evaluate health care interventions: explanation and elaboration. Ann Intern Med 
2009; 151(4):W65-W94. 

 (65)  Willis BH, Quigley M. The assessment of the quality of reporting of meta-analyses 
in diagnostic research: a systematic review. BMC Med Res Methodol 2011; 11:163. 

 (66)  Schunemann HJ, Oxman AD, Brozek J, Glasziou P, Jaeschke R, Vist GE et al. 
Grading quality of evidence and strength of recommendations for diagnostic tests 
and strategies. BMJ 2008; 336(7653):1106-1110. 

 
  
 
 
 
 



EUnetHTA JA2 Guideline ”Meta-analysis of diagnostic test accuracy studies” WP 7 

 
NOV 2014 © EUnetHTA, 2015. Reproduction is authorised provided EUnetHTA is explicitly acknowledged   41  

  

Annexe 2. Documentation of literature search 
 

Keywords 

Five keywords were defined to enable identification of relevant literature: 

• diagnostic 
•  test 
•  accuracy 
• meta-analysis 
• systematic 

 

Search engines and sources of information 

A variety of sources of information were identified to find published literature and 
information pertinent to the development of these guidelines. 

Literature search 

• EMBASE 
• MEDLINE 
• DARE 
• Cochrane Database of Systematic Reviews 
• CADTH/CEDAC 
• EBSCOhost 

Internet search 

• Google and Google Scholar 
• ScienceDirect 
• Wiley-Interscience 
• Hand searching of references cited in relevant documents 
• The Cochrane Collaboration 
• National Guideline Clearinghouse 
• National Institute for Health and Clinical Excellence 
• ISPOR 
• Pharmaceutical Benefits Advisory Committee (PBAC) 
• Centre for Reviews and Dissemination, University of York 
• University of Bristol 

Guidelines search 

The websites of EUnetHTA member agencies and those of major international 
agencies were searched for relevant guidelines. 

Other specifically identified sources of information 
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• Bossuyt PM, Irwig L, Craig J, Glasziou P. Comparative accuracy: assessing new 
tests against existing diagnostic pathways. BMJ. 2006; 332: 1089-1092. 

• Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig LM, et al. The 
STARD statement for reporting studies of diagnostic accuracy: explanation and 
elaboration. Ann Intern Med. 2003; 138(1):W1-12. 

• Chappell FM, Raab GM, Wardlaw JM. When are summary ROC curves appropriate 
for diagnostic meta-analyses? Statistics in Medicine. 2009; 28(21): 2653-2668.  

• Harbord RM, Whiting P, Sterne JAC, Egger M, Deeks JJ, Shang A, et al. An 
empirical comparison of methods for meta-analysis of diagnostic accuracy showed 
hierarchical models are necessary. Journal of Clinical Epidemiology. 2008; 61: 
1095-1103.  

• Moher D, Liberati A, Tetzlaff J, Altman DG, the PRISMA Group. Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Ann 
Intern Med. 2009; 151(4):264-269. 

• Moses LE, Shapiro D, Littenberg B. Combining independent studies of a diagnostic 
test into a summary roc curve: Data-analytic approaches and some additional 
considerations. Statistics in Medicine. 1993; 12: 1293-1316. 

• Reitsma JB, Glas AS, Rutjes AWS, Scholten RJPM, Bossuyt PM, Zwinderman AH. 
Bivariate analysis of sensitivity and specificity produces informative summary 
measures in diagnostic reviews. Journal of Clinical Epidemiology. 2005; 58: 982-
990. 

• Rutter CM, Gatsonis CA. A hierarchical regression approach to meta-analysis of 
diagnostic test accuracy evaluations. Statistics in Medicine. 2001; 20(19): 2865-
2884. 

• Simel DL, Bossuyt PMM. Differences between univariate and bivariate models for 
summarizing diagnostic accuracy may not be large. Journal of Clinical 
Epidemiology. 2009; 62(12): 1292-1300. 

• Sutton AJ, Higgins JPT. Recent developments in meta-analysis. Statistics in 
Medicine. 2008; 27: 625-650. 

• Tawoingi Y, Leeflang MMG, Deeks JJ. Empirical Evidence of the Importance of 
Comparative Studies of Diagnostic Test Accuracy. Annals of Internal Medicine. 
2013; 158: 544-554. 

• Verde P. Meta-analysis of diagnostic test data: A bivariate Bayesian modeling 
approach. Statistics in Medicine. 2010; 29: 3088-3102 

• Deeks JJ. Systematic reviews of evaluations of diagnostic and screening tests. In:  
Egger M, Davey Smith G, Altman DG (eds). Systematic Reviews in Health Care. 
BMJ Books. London, 2001. 

• Diagnostic Test Accuracy Working Group. Handbook for DTA Reviews Version 
1.0.1. Cochrane Collaboration, 2009. 

• Harbord RM, Whiting P. Metandi: Meta-analysis of diagnostic accuracy using 
hierarchical logistic regression. In: Sterne JAC (ed). Meta-Analysis in Stata – An 
Updated Collection from the Stata Journal. Stata Press. Texas, 2009. 

• Health Information and Quality Authority. Guidelines for Evaluating the Clinical 
Effectiveness of Health Technologies in Ireland. HIQA. Dublin, 2011. 

 

Strategies of research 

Reports, papers and other guidance documents were assessed on the basis of whether 
they described, applied or assessed methods of meta-analysis for diagnostic test accuracy 
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studies. Documents that only mentioned methods but did not describe, apply or assess 
them were disregarded after being checked for useful references. Documents that applied 
methods were used to determine the scope of application, utility and possible limitations of 
those methods. Finally, documents that assessed methods were used to compare 
methods directly and to elicit recommendations. Where relevant, the quality of studies was 
assessed using the STARD (Standards for Reporting for Reporting of Diagnostic 
Accuracy) or PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-
Analyses) statements. 

For PubMed, the search was limited to the period 1990 to date (end June 2013). In 
EBSCO the search was limited to 1990 to 2013 (inclusive). In both cases the search was 
limited to English language publications and human subjects. Database searches used the 
following search strategy: 

(diagnostic[Title/Abstract]) AND test[Title/Abstract]) AND accuracy[Title/Abstract]) AND 
(meta-analysis[Title/Abstract]) OR systematic[Title/Abstract]) 

 

Findings of literature search 

The initial search returned 1,802 articles that were potentially useful. After scanning titles, 
abstracts and, in some cases, full text, 126 articles were retained. Of these, 63 were 
ultimately used and referenced in the guidelines. 
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Figure 7. Flowchart of literature search. 
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Annexe 3. Other sources of information 
 

No other sources of information were used. 
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